scholarly journals Immune function of the serosa in hemimetabolous insect eggs

2021 ◽  
Author(s):  
Chris G.C. Jacobs ◽  
Remy van der Hulst ◽  
Yen-Ta Chen ◽  
Ryan P. Williamson ◽  
Siegfried Roth ◽  
...  

AbstractInsects comprise more than a million species and many authors have attempted to explain this success by evolutionary innovations. A much overlooked evolutionary novelty of insects is the serosa, an extraembryonic epithelium around the yolk and embryo. We have shown previously that this epithelium provides innate immune protection to eggs of the beetle Tribolium castaneum. It remained elusive, however, whether this immune competence evolved in the Tribolium lineage or is ancestral to all insects. Here, we expand our studies to two hemimetabolous insects, the bug Oncopeltus fasciatus and the swarming grasshopper Locusta migratoria. For Oncopeltus, RNA sequencing reveals an extensive response upon infection, including the massive upregulation of antimicrobial peptides (AMPs). We demonstrate antimicrobial activity of these peptides using in vitro bacterial growth assays, and describe two novel AMP families called Serosins and Ovicins. For both insects, qPCRs show immune competence of the eggs when the serosa is present, and in situ hybridizations demonstrate that immune gene expression is localized in the serosa. This first evidence from hemimetabolous insect eggs suggests that immune competence is an ancestral property of the serosa. The evolutionary origin of the serosa with its immune function might have facilitated the spectacular radiation of the insects.

2011 ◽  
Vol 26 (S2) ◽  
pp. 912-912
Author(s):  
M. Zink ◽  
T. Ferbert ◽  
S.T. Frank ◽  
P. Seufert ◽  
P.J. Gebicke-Härter ◽  
...  

IntroductionPerinatal exposure to alcohol (PEA) induces general developmental and specific neuropsychiatric disturbances in association with disturbed synaptic plasticity and functions of the amino acid neurotransmitter glutamate.ObjectiveWe were interested in effects of ethanol during the terminal neurodevelopmental differentiation on glutamatergic neurotransmission.AimsTo establish an animal model based on vapor chamber exposure and to assess the expression of vGluT1, EAAT1 to 4, NMDA receptor (NR) subunits 1, 2A to D and NR binding with 3H-labeled MK 801.MethodsAfter delivery, female Wistar Han outbred rats (N = 4) and their pups were exposed until postnatal day 8 (P8). At the age of 5 months, the animals were behaviorally characterized. Both, at P8 and after the testing we performed in situ-hybridizations receptor binding assays.ResultsPEA-pubs showed a pronounced and highly significant retardation of body weight and length. Behavioral testing revealed no differences in locomotion and anxiety (open field and elevated plus maze) as well as T-maze-learning, but significantly impaired hippocampus-dependent spatial learning (MWM). We observed significant inductions of vGluT1, EAAT1, EAAT3, NR2A, 2B, 2C and 2D, as well as trends of increased NR1 mRNA. NR binding was found increased in hippocampus (P8) and parietal cortex (P8 and 5M).ConclusionsThe observed inductions of glial glutamate transporters validate previous in vitro data. Altered glutamatergic neurotransmission in general might be considered a molecular correlate of the learning deficit in our PEA model. This further supports the glutamatergic theory of PEA and suggests new targets for therapeutic interventions.


2001 ◽  
Vol 155 (3) ◽  
pp. 381-392 ◽  
Author(s):  
Jacquelyn Gerhart ◽  
Brian Bast ◽  
Christine Neely ◽  
Stephanie Iem ◽  
Paula Amegbe ◽  
...  

The epiblast of the chick embryo gives rise to the ectoderm, mesoderm, and endoderm during gastrulation. Previous studies revealed that MyoD-positive cells were present throughout the epiblast, suggesting that skeletal muscle precursors would become incorporated into all three germ layers. The focus of the present study was to examine a variety of organs from the chicken fetus for the presence of myogenic cells. RT-PCR and in situ hybridizations demonstrated that MyoD-positive cells were present in the brain, lung, intestine, kidney, spleen, heart, and liver. When these organs were dissociated and placed in culture, a subpopulation of cells differentiated into skeletal muscle. The G8 antibody was used to label those cells that expressed MyoD in vivo and to follow their fate in vitro. Most, if not all, of the muscle that formed in culture arose from cells that expressed MyoD and G8 in vivo. Practically all of the G8-positive cells from the intestine differentiated after purification by FACS®. This population of ectopically located cells appears to be distinct from multipotential stem cells and myofibroblasts. They closely resemble quiescent, stably programmed skeletal myoblasts with the capacity to differentiate when placed in a permissive environment.


1986 ◽  
Vol 103 (5) ◽  
pp. 1945-1955 ◽  
Author(s):  
A L Tyner ◽  
E Fuchs

Keratin K6 is a protein that is expressed in human skin under conditions of hyperproliferation (e.g., wound-healing, psoriasis, and cell culture) and malignant transformation (e.g., squamous cell carcinomas). When induced, the appearance of K6 is rapid: if skin tissue is placed in radiolabeled culture medium, this protein can be detected within an hour. The regulation of K6 seems to be controlled partly by a posttranscriptional mechanism: At least two K6 genes are actively transcribed both in vivo, when the protein is not made, as well as in vitro, when abundant levels of the protein are expressed. Substantial levels of K6a and K6b RNAs can be detected in skin by Northern Blot analysis, and these RNAs are largely, if not fully translatable in vitro. In situ hybridizations reveal that the RNAs are distributed throughout the living layers of the epidermis. The rapid induction of K6 expression through a posttranscriptional regulatory mechanism suggests that this keratin may play an important role in designing a cytoskeletal architecture that is compatible with the hyperproliferative state.


Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
C. Jennermann ◽  
S. A. Kliewer ◽  
D. C. Morris

Peroxisome proliferator-activated receptor gamma (PPARg) is a member of the nuclear hormone receptor superfamily and has been shown in vitro to regulate genes involved in lipid metabolism and adipocyte differentiation. By Northern analysis, we and other researchers have shown that expression of this receptor predominates in adipose tissue in adult mice, and appears first in whole-embryo mRNA at 13.5 days postconception. In situ hybridization was used to find out in which developing tissues PPARg is specifically expressed.Digoxigenin-labeled riboprobes were generated using the Genius™ 4 RNA Labeling Kit from Boehringer Mannheim. Full length PPAR gamma, obtained by PCR from mouse liver cDNA, was inserted into pBluescript SK and used as template for the transcription reaction. Probes of average size 200 base pairs were made by partial alkaline hydrolysis of the full length transcripts. The in situ hybridization assays were performed as described previously with some modifications. Frozen sections (10 μm thick) of day 18 mouse embryos were cut, fixed with 4% paraformaldehyde and acetylated with 0.25% acetic anhydride in 1.0M triethanolamine buffer. The sections were incubated for 2 hours at room temperature in pre-hybridization buffer, and were then hybridized with a probe concentration of 200μg per ml at 70° C, overnight in a humidified chamber. Following stringent washes in SSC buffers, the immunological detection steps were performed at room temperature. The alkaline phosphatase labeled, anti-digoxigenin antibody and detection buffers were purchased from Boehringer Mannheim. The sections were treated with a blocking buffer for one hour and incubated with antibody solution at a 1:5000 dilution for 2 hours, both at room temperature. Colored precipitate was formed by exposure to the alkaline phosphatase substrate nitrobluetetrazoliumchloride/ bromo-chloroindlylphosphate.


2018 ◽  
Vol 12 (7-8) ◽  
pp. 38-45
Author(s):  
A. N. EFREMOV ◽  
N. V. PLIKINA ◽  
T. ABELI

Rare species are most vulnerable to man-made impacts, due to their biological characteristics or natural resource management. As a rule, the economic impact is associated with the destruction and damage of individual organisms, the destruction or alienation of habitats. Unfortunately, the conservation of habitat integrity is an important protection strategy, which is not always achievable in the implementation of industrial and infrastructural projects. The aim of the publication is to summarize the experience in the field of protection of rare species in the natural habitat (in situ), to evaluate and analyze the possibility of using existing methods in design and survey activities. In this regard, the main methodological approaches to the protection of rare species in the natural habitat (in situ) during the proposed economic activity were reflected. The algorithm suggested by the authors for implementing the in situ project should include a preparatory stage (initial data collection, preliminary risk assessments, technology development, obtaining permitting documentation), the main stage, the content of which is determined by the selected technology and a long monitoring stage, which makes it possible to assess the effectiveness of the taken measures. Among the main risks of in situ technology implementation, the following can be noted: the limited resources of the population that do not allow for the implementation of the procedure without prior reproduction of individuals in situ (in vitro); limited knowledge of the biology of the species; the possibility of invasion; the possibility of crossing for closely related species that сo-exist in the same habitat; social risks and consequences, target species or population may be important for the local population; financial risks during the recovery of the population. The available experience makes it possible to consider the approach to the conservation of rare species in situ as the best available technology that contributes to reducing negative environmental risks.


Sign in / Sign up

Export Citation Format

Share Document