scholarly journals Functional and Highly Crosslinkable HIV-1 Envelope Glycoproteins Enriched in a Pretriggered Conformation

2021 ◽  
Author(s):  
Hanh T. Nguyen ◽  
Alessandra Qualizza ◽  
Saumya Anang ◽  
Meiqing Zhao ◽  
Shitao Zou ◽  
...  

ABSTRACTBinding to the receptor, CD4, drives the pretriggered, “closed” (State-1) conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer into more “open” conformations (States 2 and 3). Broadly neutralizing antibodies, which are elicited inefficiently, mostly recognize the State-1 Env conformation, whereas the more commonly elicited poorly neutralizing antibodies recognize States 2/3. HIV-1 Env metastability has created challenges for defining the State-1 structure and developing immunogens mimicking this labile conformation. The availability of functional State-1 Envs that can be efficiently crosslinked at lysine and/or acidic amino acid residues might assist these endeavors. To that end, we modified HIV-1AD8 Env, which exhibits an intermediate level of triggerability by CD4. We introduced lysine/acidic residues at positions that exhibit such polymorphisms in natural HIV-1 strains. Env changes that were tolerated with respect to gp120-gp41 processing, subunit association and virus entry were further combined. Two common polymorphisms, Q114E and Q567K, as well as a known variant, A582T, additively rendered pseudoviruses resistant to cold, soluble CD4 and a CD4-mimetic compound, phenotypes indicative of stabilization of the pretriggered State-1 Env conformation. Combining these changes resulted in two lysine-rich HIV-1AD8 Env variants (E.2 and AE.2) with neutralization- and cold-resistant phenotypes comparable to those of natural, less triggerable Tier 2/3 HIV-1 isolates. Compared with these and the parental Envs, the E.2 and AE.2 Envs were cleaved more efficiently and exhibited stronger gp120-trimer association in detergent lysates. These highly crosslinkable Envs enriched in a pretriggered conformation should assist characterization of the structure and immunogenicity of this labile state.IMPORTANCEThe development of an efficient vaccine is critical for combating HIV-1 infection worldwide. However, the instability of the pretriggered shape (State 1) of the viral envelope glycoprotein (Env) makes it difficult to raise neutralizing antibodies against HIV-1. Here, by introducing multiple changes in Env, we derived two HIV-1 Env variants that are enriched in State 1 and can be efficiently crosslinked to maintain this shape. These Env complexes are more stable in detergent, assisting their purification. Thus, our study provides a path to a better characterization of the native pretriggered Env, which should assist vaccine development.

2020 ◽  
Vol 94 (17) ◽  
Author(s):  
Maolin Lu ◽  
Xiaochu Ma ◽  
Nick Reichard ◽  
Daniel S. Terry ◽  
James Arthos ◽  
...  

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer of gp120-gp41 heterodimers mediates virus entry into CD4-positive (CD4+) cells. Single-molecule fluorescence resonance energy transfer (smFRET) has revealed that native Env on the surface of viruses predominantly exists in a pretriggered conformation (state 1) that is preferentially recognized by many broadly neutralizing antibodies (bNAbs). Env is activated by binding receptor CD4, which drives transitions through a default intermediate conformation (state 2) into the three-CD4-bound open conformation (state 3). The application of smFRET to assess the conformational state of existing Env constructs and ligand complexes recently revealed that all current high-resolution structures correspond to downstream states 2 and 3. The structure of state 1, therefore, remains unknown. We sought to identify conditions whereby HIV-1 Env could be stabilized in the pretriggered state 1 for possible structural characterization. Shedding of gp120, known to severely complicate structural studies, can be prevented by using the uncleaved gp160JR-FL precursor with alterations in the protease cleavage site (R508S/R511S) or by introducing a disulfide bridge between gp120 and gp41 designated “SOS” (A501C/T605C). smFRET demonstrated that both shedding-preventing modifications shifted the conformational landscape of Env downstream toward states 2 and 3. However, both membrane-bound Env proteins on the surface of intact viruses remained conformationally dynamic, responsive to state-stabilizing ligands, and able to be stabilized in state 1 by specific ligands such as the Bristol-Myers Squibb (BMS) entry inhibitors. The here-described identification of state 1-stabilizing conditions may enable structural characterization of the state 1 conformation of HIV-1 Env. IMPORTANCE The HIV-1 envelope glycoprotein (Env) opens in response to receptor CD4 binding from a pretriggered (state 1) conformation through a necessary intermediate to the three-CD4-bound conformation. The application of smFRET to test the conformational state of existing Env constructs and ligand complexes used for high-resolution structures recently revealed that they correspond to the downstream conformations. The structure of the pretriggered Env conformation, preferentially recognized by broadly neutralizing antibodies, remains unknown. Here, we identify experimental conditions that stabilize membrane-bound and shedding-resistant virus Env trimers in state 1, potentially facilitating structural characterization of this unknown conformational state.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Karim Dorgham ◽  
Nicolas Pietrancosta ◽  
Amel Affoune ◽  
Olivier Lucar ◽  
Tahar Bouceba ◽  
...  

The design of immunogens susceptible to elicit potent and broadly neutralizing antibodies against the human immunodeficiency virus type 1 (HIV-1) remains a veritable challenge in the course of vaccine development. Viral envelope proteins adopt different conformational states during the entry process, allowing the presentation of transient neutralizing epitopes. We focused on the highly conserved 3S motif of gp41, which is exposed to the surface envelope in its trimeric prefusion state. Vaccination with a W614A-modified 3S peptide induces in animals neutralizing anti-HIV-1 antibodies among which we selected clone F8. We used F8 as bait to select for W614A-3S phage-peptide mimics. Binding and molecular docking studies revealed that F8 interacts similarly with W614A-3S and a Mim_F8-1 mimotope, despite their lack of sequence homology, suggesting structural mimicry. Finally, vaccination of mice with the purified Mim_F8-1 phage elicited HIV-1-neutralizing antibodies that bound to the cognate W614A-3S motif. Collectively, our findings provide new insights into the molecular design of immunogens to elicit antibodies with neutralizing properties.


2017 ◽  
Vol 91 (15) ◽  
Author(s):  
Rajesh P. Ringe ◽  
Gabriel Ozorowski ◽  
Kimmo Rantalainen ◽  
Weston B. Struwe ◽  
Katie Matthews ◽  
...  

ABSTRACT Native-like trimers of the SOSIP design are being developed as immunogens in human immunodeficiency virus type 1 (HIV-1) vaccine development programs. These trimers display the epitopes for multiple broadly neutralizing antibodies (bNAbs) but can also expose binding sites for some types of nonneutralizing antibodies (non-NAbs). Among the latter are epitopes in the gp120 V3 region that are highly immunogenic when SOSIP trimers are evaluated in animal models. It is presently uncertain whether antibodies against V3 can interfere with the induction of NAbs, but there are good arguments in favor of suppressing such “off-target” immune responses. Accordingly, we have assessed how to minimize the exposure of V3 non-NAb epitopes and thereby reduce their immunogenicity by introducing N-glycans within the V3 region of BG505 SOSIP trimers. We found that inserting glycans at positions 306 and 314 (termed M1 and M7) markedly reduced V3 antigenicity while improving the presentation of trimer apex bNAb epitopes. Both added glycans were shown to be predominantly of the Man6GlcNAc2 form. The additional introduction of the E64K ground-state stabilizing substitution markedly reduced or ablated soluble CD4 (sCD4) induction of non-NAb epitopes in V3 and/or associated with the coreceptor binding site. When a V3 glycan- and E64K-modified trimer variant, BG505 SOSIP.664-E64K.M1M7, was tested in rabbits, V3 immunogenicity was eliminated while the autologous NAb response was unchanged. IMPORTANCE Trimeric proteins are being developed for future HIV-1 vaccine trials in humans, with the goal of eliciting broadly active neutralizing antibodies (NAbs) that are active against a wide variety of circulating strains. In animal models, the present generation of native-like trimer immunogens, exemplified by the BG505 SOSIP.664 construct, induces narrow-specificity antibodies against the neutralization-resistant (tier-2), sequence-matched virus and more broadly active antibodies against sequence-divergent atypically neutralization-sensitive (tier-1) viruses. A concern in the trimer immunogen design field has been whether the latter off-target antibodies might interfere with the induction of the more desired responses to tier-2 epitopes. Here, we have inserted two glycans into the dominant site for tier-1 NAbs, the gp120 V3 region, to block the induction of off-target antibodies. We characterized the new trimers, tested them as immunogens in rabbits, and found that the blocking glycans eliminated the induction of tier-1 NAbs to V3-epitopes.


2018 ◽  
Vol 93 (4) ◽  
Author(s):  
Rajesh P. Ringe ◽  
Pavel Pugach ◽  
Christopher A. Cottrell ◽  
Celia C. LaBranche ◽  
Gemma E. Seabright ◽  
...  

ABSTRACTIn HIV-1 vaccine research, native-like, soluble envelope glycoprotein SOSIP trimers are widely used for immunizing animals. The epitopes of autologous neutralizing antibodies (NAbs) induced by the BG505 and B41 SOSIP trimers in rabbits and macaques have been mapped to a few holes in the glycan shields that cover most of the protein surfaces. For BG505 trimers, the dominant autologous NAb epitope in rabbits involves residues that line a cavity caused by the absence of a glycan at residue 241. Here, we blocked this epitope in BG505 SOSIPv4.1 trimer immunogens by knocking in an N-linked glycan at residue 241. We then opened holes elsewhere on the trimer by knocking out single N-linked glycans at residues 197, 234, 276, 332, and 355 and found that NAb responses induced by the 241-glycan-bearing BG505 trimers were frequently redirected to the newly opened sites. The strongest evidence for redirection of the NAb response to neoepitopes, through the opening and closing of glycan holes, was obtained from trimer immunogen groups with the highest occupancy of the N241 site. We also attempted to knock in the N289-glycan to block the sole autologous NAb epitope on the B41 SOSIP.v4.1 trimer. Although a retrospective analysis showed that the new N289-glycan site was substantially underoccupied, we found some evidence for redirection of the NAb response to a neoepitope when this site was knocked in and the N356-glycan site knocked out. In neither study, however, was redirection associated with increased neutralization of heterologous tier 2 viruses.IMPORTANCEEngineered SOSIP trimers mimic envelope-glycoprotein spikes, which stud the surface of HIV-1 particles and mediate viral entry into cells. When used for immunizing test animals, they elicit antibodies that neutralize resistant sequence-matched HIV-1 isolates. These neutralizing antibodies recognize epitopes in holes in the glycan shield that covers the trimer. Here, we added glycans to block the most immunogenic neutralization epitopes on BG505 and B41 SOSIP trimers. In addition, we removed selected other glycans to open new holes that might expose new immunogenic epitopes. We immunized rabbits with the various glycan-modified trimers and then dissected the specificities of the antibody responses. Thus, in principle, the antibody response might be diverted from one site to a more cross-reactive one, which would help in the induction of broadly neutralizing antibodies by HIV-1 vaccines based on envelope glycoproteins.


2009 ◽  
Vol 84 (3) ◽  
pp. 1439-1452 ◽  
Author(s):  
Michael S. Seaman ◽  
Holly Janes ◽  
Natalie Hawkins ◽  
Lauren E. Grandpre ◽  
Colleen Devoy ◽  
...  

ABSTRACT The restricted neutralization breadth of vaccine-elicited antibodies is a major limitation of current human immunodeficiency virus-1 (HIV-1) candidate vaccines. In order to permit the efficient identification of vaccines with enhanced capacity for eliciting cross-reactive neutralizing antibodies (NAbs) and to assess the overall breadth and potency of vaccine-elicited NAb reactivity, we assembled a panel of 109 molecularly cloned HIV-1 Env pseudoviruses representing a broad range of genetic and geographic diversity. Viral isolates from all major circulating genetic subtypes were included, as were viruses derived shortly after transmission and during the early and chronic stages of infection. We assembled a panel of genetically diverse HIV-1-positive (HIV-1+) plasma pools to assess the neutralization sensitivities of the entire virus panel. When the viruses were rank ordered according to the average sensitivity to neutralization by the HIV-1+ plasmas, a continuum of average sensitivity was observed. Clustering analysis of the patterns of sensitivity defined four subgroups of viruses: those having very high (tier 1A), above-average (tier 1B), moderate (tier 2), or low (tier 3) sensitivity to antibody-mediated neutralization. We also investigated potential associations between characteristics of the viral isolates (clade, stage of infection, and source of virus) and sensitivity to NAb. In particular, higher levels of NAb activity were observed when the virus and plasma pool were matched in clade. These data provide the first systematic assessment of the overall neutralization sensitivities of a genetically and geographically diverse panel of circulating HIV-1 strains. These reference viruses can facilitate the systematic characterization of NAb responses elicited by candidate vaccine immunogens.


2020 ◽  
Author(s):  
Dani Vézina ◽  
Shang Yu Gong ◽  
William D. Tolbert ◽  
Shilei Ding ◽  
Dung Nguyen ◽  
...  

The HIV-1 envelope glycoprotein (Env) trimer [(gp120/gp41)3] is a metastable complex expressed at the surface of viral particles and infected cells that samples different conformations. Before engaging CD4, Env adopts an antibody-resistant “closed” conformation (State 1). CD4 binding triggers an intermediate conformation (State 2) and then a more “open” conformation (State 3) that can be recognized by non-neutralizing antibodies (nnAbs) such as those that recognize the coreceptor binding site (CoRBS). Binding of antibodies to the CoRBS permits another family of nnAbs, the anti-cluster A family of Abs which target the gp120 inner domain, to bind and stabilize an asymmetric conformation (State 2A). Cells expressing Env in this conformation are susceptible to antibody-dependent cellular cytotoxicity (ADCC). This conformation can be stabilized by small-molecule CD4 mimetics (CD4mc) or soluble CD4 (sCD4) in combination with anti-CoRBS Ab and anti-cluster A antibodies. The precise stoichiometry of each component that permits this sequential opening of Env remains unknown. Here, we used a cell-based ELISA (CBE) assay to evaluate each component individually. In this assay we used a “trimer mixing” approach by combining wild-type (wt) subunits with subunits impaired for CD4 or CoRBS Ab binding. This enabled us to show that State 2A requires all three gp120 subunits to be bound by sCD4/CD4mc and anti-CoRBS Abs. Two of these subunits can then bind anti-cluster A Abs. Altogether, our data suggests how this antibody vulnerable Env conformation is stabilized. Importance Stabilization of HIV-1 Env State 2A has been shown to sensitize infected cells to ADCC. State 2A can be stabilized by a “cocktail” composed of CD4mc, anti-CoRBS and anti-cluster A Abs. We present evidence that optimal State 2A stabilization requires all three gp120 subunits to be bound by both CD4mc and anti-CoRBS Abs. Our study provides valuable information on how to stabilize this ADCC-vulnerable conformation. Strategies aimed at stabilizing State 2A might have therapeutic utility.


2016 ◽  
Vol 90 (23) ◽  
pp. 10574-10586 ◽  
Author(s):  
Nancy S. Longo ◽  
Matthew S. Sutton ◽  
Andrea R. Shiakolas ◽  
Javier Guenaga ◽  
Marissa C. Jarosinski ◽  
...  

ABSTRACT One of the goals of HIV-1 vaccine development is the elicitation of neutralizing antibodies against vulnerable regions on the envelope glycoprotein (Env) viral spike. Broadly neutralizing antibodies targeting the Env glycan-V3 region (also called the N332 glycan supersite) have been described previously, with several single lineages each derived from different individual donors. We used a high-throughput B-cell culture method to isolate neutralizing antibodies from an HIV-1-infected donor with high serum neutralization breadth. Clonal relatives from three distinct antibody lineages were isolated. Each of these antibody lineages displayed modest breadth and potency but shared several characteristics with the well-characterized glycan-V3 antibodies, including dependence on glycans N332 and N301, VH4 family gene utilization, a heavy chain complementarity-determining region 2 (CDRH2) insertion, and a longer-than-average CDRH3. In contrast to previously described glycan-V3 antibodies, these antibodies preferentially recognized the native Env trimer compared to monomeric gp120. These data indicate the diversity of antibody specificities that target the glycan-V3 site. The quaternary binding preference of these antibodies suggests that that their elicitation likely requires the presentation of a native-like trimeric Env immunogen. IMPORTANCE Broadly neutralizing antibodies targeting the HIV-1 glycan-V3 region with single lineages from individual donors have been described previously. Here we describe three lineages from a single donor, each of which targets glycan-V3. Unlike previously described glycan-V3 antibodies, these mature antibodies bind preferentially to the native Env trimer and weakly to the gp120 monomer. These data extend our knowledge of the immune response recognition of the N332 supersite region and suggest that the mode of epitope recognition is more complex than previously anticipated.


2020 ◽  
Vol 94 (24) ◽  
Author(s):  
Anna Schorcht ◽  
Tom L. G. M. van den Kerkhof ◽  
Christopher A. Cottrell ◽  
Joel D. Allen ◽  
Jonathan L. Torres ◽  
...  

ABSTRACT The induction of broadly neutralizing antibodies (bNAbs) is a major goal in vaccine research. HIV-1-infected individuals that develop exceptionally strong bNAb responses, termed elite neutralizers, can inform vaccine design by providing blueprints for the induction of similar bNAb responses. We describe a new recombinant native-like envelope glycoprotein (Env) SOSIP trimer, termed AMC009, based on the viral founder sequences of an elite neutralizer. The subtype B AMC009 SOSIP protein formed stable native-like trimers that displayed multiple bNAb epitopes. Overall, its structure at 4.3-Å resolution was similar to that of BG505 SOSIP.664. The AMC009 trimer resembled one from a second elite neutralizer, AMC011, in having a dense and complete glycan shield. When tested as immunogens in rabbits, the AMC009 trimers did not induce autologous neutralizing antibody (NAb) responses efficiently while the AMC011 trimers did so very weakly, outcomes that may reflect the completeness of their glycan shields. The AMC011 trimer induced antibodies that occasionally cross-neutralized heterologous tier 2 viruses, sometimes at high titer. Cross-neutralizing antibodies were more frequently elicited by a trivalent combination of AMC008, AMC009, and AMC011 trimers, all derived from subtype B viruses. Each of these three individual trimers could deplete the NAb activity from the rabbit sera. Mapping the polyclonal sera by electron microscopy revealed that antibodies of multiple specificities could bind to sites on both autologous and heterologous trimers. These results advance our understanding of how to use Env trimers in multivalent vaccination regimens and the immunogenicity of trimers derived from elite neutralizers. IMPORTANCE Elite neutralizers, i.e., individuals who developed unusually broad and potent neutralizing antibody responses, might serve as blueprints for HIV-1 vaccine design. Here, we studied the immunogenicity of native-like recombinant envelope glycoprotein (Env) trimers based on viral sequences from elite neutralizers. While immunization with single trimers from elite neutralization did not recapitulate the breadth and potency of neutralization observed in these infected individuals, a combination of three subtype B Env trimers from elite neutralizers resulted in some neutralization breadth within subtype B viruses. These results should guide future efforts to design vaccines to induce broadly neutralizing antibodies.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009543
Author(s):  
Safia S. Aljedani ◽  
Tyler J. Liban ◽  
Karen Tran ◽  
Ganesh Phad ◽  
Suruchi Singh ◽  
...  

Understanding the molecular mechanisms by which antibodies target and neutralize the HIV-1 envelope glycoprotein (Env) is critical in guiding immunogen design and vaccine development aimed at eliciting cross-reactive neutralizing antibodies (NAbs). Here, we analyzed monoclonal antibodies (mAbs) isolated from non-human primates (NHPs) immunized with variants of a native flexibly linked (NFL) HIV-1 Env stabilized trimer derived from the tier 2 clade C 16055 strain. The antibodies displayed neutralizing activity against the autologous virus with potencies ranging from 0.005 to 3.68 μg/ml (IC50). Structural characterization using negative-stain EM and X-ray crystallography identified the variable region 2 (V2) of the 16055 NFL trimer to be the common epitope for these antibodies. The crystal structures revealed that the V2 segment adopts a β-hairpin motif identical to that observed in the 16055 NFL crystal structure. These results depict how vaccine-induced antibodies derived from different clonal lineages penetrate through the glycan shield to recognize a hypervariable region within V2 (residues 184–186) that is unique to the 16055 strain. They also provide potential explanations for the potent autologous neutralization of these antibodies, confirming the immunodominance of this site and revealing that multiple angles of approach are permissible for affinity/avidity that results in potent neutralizing capacity. The structural analysis reveals that the most negatively charged paratope correlated with the potency of the mAbs. The atomic level information is of interest to both define the means of autologous neutralization elicited by different tier 2-based immunogens and facilitate trimer redesign to better target more conserved regions of V2 to potentially elicit cross-neutralizing HIV-1 antibodies.


2019 ◽  
Vol 93 (8) ◽  
Author(s):  
Michiel T. van Diepen ◽  
Rosamund Chapman ◽  
Nicola Douglass ◽  
Shireen Galant ◽  
Penny L. Moore ◽  
...  

ABSTRACTA vaccine regimen that elicits broadly neutralizing antibodies (bNAbs) is a major goal in HIV-1 vaccine research. In this study, we assessed the immunogenicity of the CAP256 superinfecting viral envelope (CAP256 SU) protein delivered by modified vaccinia virus Ankara (MVA) and DNA vaccines in different prime-boost combinations followed by a soluble protein (P) boost. The envelope protein (Env) contained a flexible glycine linker and I559P mutation. Trimer-specific bNAbs PGT145, PG16, and CAP256 VRC26_08 efficiently bound to the membrane-bound CAP256 envelope expressed on the surface of cells transfected or infected with the DNA and MVA vaccines. The vaccines were tested in two different vaccination regimens in rabbits. Both regimens elicited autologous tier 2 neutralizing antibodies (NAbs) and high-titer binding antibodies to the matching CAP256 Env and CAP256 V1V2 loop scaffold. The immunogenicity of DNA and MVA vaccines expressing membrane-bound Env alone was compared to that of Env stabilized in a more native-like conformation on the surface of Gag virus-like particles (VLPs). The inclusion of Gag in the DNA and MVA vaccines resulted in earlier development of tier 2 NAbs for both vaccination regimens. In addition, a higher proportion of the rabbits primed with DNA and MVA vaccines that included Gag developed tier 2 NAbs than did those primed with vaccine expressing Env alone. Previously, these DNA and MVA vaccines expressing subtype C mosaic HIV-1 Gag were shown to elicit strong T cell responses in mice. Here we show that when the CAP256 SU envelope protein is included, these vaccines elicit autologous tier 2 NAbs.IMPORTANCEA vaccine is urgently needed to combat HIV-1, particularly in sub-Saharan Africa, which remains disproportionately affected by the AIDS pandemic and accounts for the majority of new infections and AIDS-related deaths. In this study, two different vaccination regimens were compared. Rabbits that received two DNA primes followed by two modified vaccinia virus Ankara (MVA) and two protein inoculations developed better immune responses than those that received two MVA and three protein inoculations. In addition, DNA and MVA vaccines that expressed mosaic Gag VLPs presenting a stabilized Env antigen elicited better responses than Env alone, which supports the inclusion of Gag VLPs in an HIV-1 vaccine.


Sign in / Sign up

Export Citation Format

Share Document