scholarly journals Punch in the gut: Parasite tolerance of phytochemicals reflects host diet

2021 ◽  
Author(s):  
Evan C Palmer-Young ◽  
Ryan S Schwarz ◽  
Yan Ping Chen ◽  
Jay D Evans

Gut parasites of plant-eating insects are exposed to antimicrobial phytochemicals that can reduce infection. Trypanosomatid gut parasites infect insects of diverse nutritional ecologies as well as mammals and plants, raising the question of how host diet-associated phytochemicals shape parasite evolution and host specificity. To test the hypothesis that phytochemical tolerance of trypanosomatids reflects the chemical ecology of their hosts, we compared related parasites from honey bees and mosquitoes- hosts that differ in phytochemical consumption- and contrasted our results with previous studies on phylogenetically related, human-parasitic Leishmania. We identified one bacterial and ten plant-derived substances with known antileishmanial activity that also inhibited honey bee parasites associated with colony collapse. Bee parasites exhibited greater tolerance of chrysin- a flavonoid found in nectar, pollen, and plant resin-derived propolis. In contrast, mosquito parasites were more tolerant of cinnamic acid- a product of lignin decomposition present in woody debris-rich larval habitats. Parasites from both hosts tolerated many compounds that inhibit Leishmania, hinting at possible trade-offs between phytochemical tolerance and mammalian infection. Our results implicate the phytochemistry of host diets as a potential driver of insect-trypanosomatid associations, and identify compounds that could be incorporated into colony diets or floral landscapes to ameliorate infection in bees.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haron M. Abdel-Raziq ◽  
Daniel M. Palmer ◽  
Phoebe A. Koenig ◽  
Alyosha C. Molnar ◽  
Kirstin H. Petersen

AbstractIn digital agriculture, large-scale data acquisition and analysis can improve farm management by allowing growers to constantly monitor the state of a field. Deploying large autonomous robot teams to navigate and monitor cluttered environments, however, is difficult and costly. Here, we present methods that would allow us to leverage managed colonies of honey bees equipped with miniature flight recorders to monitor orchard pollination activity. Tracking honey bee flights can inform estimates of crop pollination, allowing growers to improve yield and resource allocation. Honey bees are adept at maneuvering complex environments and collectively pool information about nectar and pollen sources through thousands of daily flights. Additionally, colonies are present in orchards before and during bloom for many crops, as growers often rent hives to ensure successful pollination. We characterize existing Angle-Sensitive Pixels (ASPs) for use in flight recorders and calculate memory and resolution trade-offs. We further integrate ASP data into a colony foraging simulator and show how large numbers of flights refine system accuracy, using methods from robotic mapping literature. Our results indicate promising potential for such agricultural monitoring, where we leverage the superiority of social insects to sense the physical world, while providing data acquisition on par with explicitly engineered systems.


Apidologie ◽  
2011 ◽  
Vol 42 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Jevrosima Stevanovic ◽  
Zoran Stanimirovic ◽  
Elke Genersch ◽  
Sanja R. Kovacevic ◽  
Jovan Ljubenkovic ◽  
...  

2008 ◽  
Vol 82 (13) ◽  
pp. 6209-6217 ◽  
Author(s):  
G. Palacios ◽  
J. Hui ◽  
P. L. Quan ◽  
A. Kalkstein ◽  
K. S. Honkavuori ◽  
...  

ABSTRACT Israel acute paralysis virus (IAPV) is associated with colony collapse disorder of honey bees. Nonetheless, its role in the pathogenesis of the disorder and its geographic distribution are unclear. Here, we report phylogenetic analysis of IAPV obtained from bees in the United States, Canada, Australia, and Israel and the establishment of diagnostic real-time PCR assays for IAPV detection. Our data indicate the existence of at least three distinct IAPV lineages, two of them circulating in the United States. Analysis of representatives from each proposed lineage suggested the possibility of recombination events and revealed differences in coding sequences that may have implications for virulence.


Author(s):  
José M. Flores ◽  
Victoria Gámiz ◽  
Ángeles Jiménez-Marín ◽  
Alicia Flores-Cortés ◽  
Sergio Gil-Lebrero ◽  
...  

Author(s):  
Kushal Naharki ◽  
Sabina Regmi

Pollinators play vital roles to the environment, biodiversity conservation, food security and several dimensions of global sustainable development. Honey bee is an important pollinator globally but has been exposed to increasing threats from diseases, pesticides and biotic stresses. This review paper highlights the role of honey bees as pollinators, addresses threats which influence decline of honey bees and assess pesticidal risk toxicity on non-target organisms. Decline of honey bee population is caused by several factors including habitat fragmentation, pesticidal toxicity, colony collapse disorder and climate change. Pesticidal residue and toxicity has an adverse effect which results in honey bee population decline, disturb foraging and contamination of bee products. Residues of agricultural pesticides like pyrethroid and neonicotinoid pose a serious threat on honey bee health further reducing agricultural production and diversity. Pesticidal risk assessments are carried out to study effects of pesticides on pollinators with an aim to provide measures to safeguard their abundance, diversity and health. Sustainable agriculture, effective policy and proper management can decrease pollinators' risk by helping to diversify the agriculture for pollen and nectars with reduced usage of pesticides and proper management.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qiang Huang ◽  
Zhi Hao Wu ◽  
Wen Feng Li ◽  
Rui Guo ◽  
Jin Shan Xu ◽  
...  

Microsporidia comprise a phylum of single cell, intracellular parasites and represent the earliest diverging branch in the fungal kingdom. The microsporidian parasite Nosema ceranae primarily infects honey bee gut epithelial cells, leading to impaired memory, suppressed host immune responses and colony collapse under certain circumstances. As the genome of N. ceranae is challenging to assembly due to very high genetic diversity and repetitive region, the genome was re-sequenced using long reads. We present a robust 8.8 Mbp genome assembly of 2,280 protein coding genes, including a high number of genes involved in transporting nutrients and energy, as well as drug resistance when compared with sister species Nosema apis. We also describe the loss of the critical protein Dicer in approximately half of the microsporidian species, giving new insights into the availability of RNA interference pathway in this group. Our results provided new insights into the pathogenesis of N. ceranae and a blueprint for treatment strategies that target this parasite without harming honey bees. The unique infectious apparatus polar filament and transportation pathway members can help to identify treatments to control this parasite.


2017 ◽  
Vol 7 (2) ◽  
pp. 1050-1056 ◽  
Author(s):  
Jonathan Farley

The disappearance of honey bees from many managed colonies in the United States and Europe in 2006 and 2007 is modeled under the assumption that the cause is some contagion.  Based on the limited data available, we use a simple model to suggest that colony collapse disorder will not destroy all colonies in the United States.  To predict the evolution of future outbreaks, however, and perhaps trace their origins, it is recommended that graph-theoretic data be collected, and that census data be collected on a more frequent basis, concerning bee populations. 


Author(s):  
Sainath Suryanarayanan

On your next stroll outdoors, you may come across a flowering plant, enjoy its beauty, and perhaps even taste its fruits. A wandering Homo sapiens, however, is probably not the flowering plant’s primary audience; an insect pollinator is more likely the one being wooed. Indeed, the vast biodiversity of flowering plants and insects on Earth is thought to be the result of a fruitful co-evolution over several million years between these organisms (Price 1997, pp. 239–258). Bees, wasps, butterflies, flies, and several other insects are also crucial in their role as pollinators for sus­taining managed agricultural ecosystems (or agro-ecosystems; National Research Council [NRC] 2007). Honey bees (Apis mellifera), managed by beekeepers, are alone estimated to be responsible for over $15 billion worth of increased yield and quality in the United States annually (Morse and Calderone 2000). U.S. growers rent an estimated 2 million beehives each year from beekeepers to pollinate over ninety different fruit, vegetable, and fiber crops (Delaplane and Mayer 2000; NRC 2007). In the first decades of the 21st century, public and scientific attention in the United States and elsewhere has been gripped by frequent reports of declines in populations of insect pollinators (e.g., Biesmeijer et al. 2006; NRC 2007), exemplified most dramatically by the news of Colony Collapse Disorder (CCD) among managed honey bees (vanEngelsdorp et al. 2009; Pettis and Delaplane 2010). While there are ongoing scientific and public debates over the extent to which the documented declines in insect pollinators constitute a global “pollinator crisis,” whether agricultural productivity has actually declined due to these losses, and what the primary causal factors are, there is nonetheless a consensus that parts of North America and Europe continue to undergo worrying reductions in the diversity and abundance of multiple species of insect pollinators (Ghazoul 2005; Stefan-Dewenter et al. 2005; NRC 2007; Carvalheiro et al. 2013). In this chapter, I analyze the main kinds of efforts that are being taken by key institutional players to resolve the environmental problem of pollinator decline in the United States.


2007 ◽  
Vol 18 (6) ◽  
pp. 280-282 ◽  
Author(s):  
Nancy N. Ragsdale ◽  
Kevin Hackett ◽  
Kim Kaplan

Sign in / Sign up

Export Citation Format

Share Document