scholarly journals Endogenous recruitment of frontal-sensory circuits during visual discrimination

2021 ◽  
Author(s):  
Eluned Broom ◽  
Vivian Imbriotis ◽  
Frank Sengpiel ◽  
William M Connelly ◽  
Adam Ranson

A long-range circuit linking anterior cingulate cortex (ACC) to primary visual cortex (V1) has been previously proposed to mediate visual selective attention in mice during visually guided behaviour. Here we used in vivo two-photon functional imaging to measure endogenous activity of ACC neurons projecting to layer 1 of V1 (ACC-V1axons) in mice either passively viewing stimuli or performing a go/no-go visually guided task. We observed that while ACC-V1axons were recruited under these conditions, this was not linked to enhancement of neural or behavioural measures of sensory coding. Instead, ACC-V1axon activity was observed to be associated with licking behaviour, modulated by reward, and biased towards task relevant sensory cortex.

2020 ◽  
Author(s):  
Mario A. Acuña ◽  
Fernando Kasanetz ◽  
Paolo De Luna ◽  
Thomas Nevian

AbstractThe perception of pain arises from distributed brain activity triggered by noxious stimuli. However, which patterns of activity make nociception distinct from other salient sensory experiences is still unknown. Using in vivo chronic two-photon calcium imaging in slightly anaesthetized mice, we identified a nociception-specific representation in the anterior cingulate cortex (ACC), that is attained by a core of neurons that code for a generalized concept of the pain experience. The overall ensemble activity allowed for an efficient discrimination of the sensory space, despite a drift in single-neuron sensory tuning over time. Following sciatic nerve lesion, the representation of nociceptive stimuli was impaired as a consequence of innocuous stimuli expanded into the nociception-specific ensemble, leading to a dysfunctional discrimination of sensory events in the ACC. Thus, the hallmark of chronic pain at the cortical neuronal network level is an impairment of pattern separation and classification identifying a circuit mechanism for altered pain processing in the brain.


2019 ◽  
Vol 45 (6) ◽  
pp. 1349-1357 ◽  
Author(s):  
Adam Ranson ◽  
Eluned Broom ◽  
Anna Powell ◽  
Fangli Chen ◽  
Guy Major ◽  
...  

Abstract Conceptual and computational models have been advanced that propose that perceptual disturbances in psychosis, such as hallucinations, may arise due to a disruption in the balance between bottom-up (ie sensory) and top-down (ie from higher brain areas) information streams in sensory cortex. However, the neural activity underlying this hypothesized alteration remains largely unexplored. Pharmacological N-methyl-d-aspartate receptor (NMDAR) antagonism presents an attractive model to examine potential changes as it acutely recapitulates many of the symptoms of schizophrenia including hallucinations, and NMDAR hypofunction is strongly implicated in the pathogenesis of schizophrenia as evidenced by large-scale genetic studies. Here we use in vivo 2-photon imaging to measure frontal top-down signals from the anterior cingulate cortex (ACC) and their influence on activity of the primary visual cortex (V1) in mice during pharmacologically induced NMDAR hypofunction. We find that global NMDAR hypofunction causes a significant increase in activation of top-down ACC axons, and that surprisingly this is associated with an ACC-dependent net suppression of spontaneous activity in V1 as well as a reduction in V1 sensory-evoked activity. These findings are consistent with a model in which perceptual disturbances in psychosis are caused in part by aberrant top-down frontal cortex activity that suppresses the transmission of sensory signals through early sensory areas.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Rafiq Huda ◽  
Grayson O. Sipe ◽  
Vincent Breton-Provencher ◽  
K. Guadalupe Cruz ◽  
Gerald N. Pho ◽  
...  

AbstractSensorimotor behaviors require processing of behaviorally relevant sensory cues and the ability to select appropriate responses from a vast behavioral repertoire. Modulation by the prefrontal cortex (PFC) is thought to be key for both processes, but the precise role of specific circuits remains unclear. We examined the sensorimotor function of anatomically distinct outputs from a subdivision of the mouse PFC, the anterior cingulate cortex (ACC). Using a visually guided two-choice behavioral paradigm with multiple cue-response mappings, we dissociated the sensory and motor response components of sensorimotor control. Projection-specific two-photon calcium imaging and optogenetic manipulations show that ACC outputs to the superior colliculus, a key midbrain structure for response selection, principally coordinate specific motor responses. Importantly, ACC outputs exert control by reducing the innate response bias of the superior colliculus. In contrast, ACC outputs to the visual cortex facilitate sensory processing of visual cues. Our results ascribe motor and sensory roles to ACC projections to the superior colliculus and the visual cortex and demonstrate for the first time a circuit motif for PFC function wherein anatomically non-overlapping output pathways coordinate complementary but distinct aspects of visual sensorimotor behavior.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Verena Pawlak ◽  
David S Greenberg ◽  
Henning Sprekeler ◽  
Wulfram Gerstner ◽  
Jason ND Kerr

Action Potential (APs) patterns of sensory cortex neurons encode a variety of stimulus features, but how can a neuron change the feature to which it responds? Here, we show that in vivo a spike-timing-dependent plasticity (STDP) protocol—consisting of pairing a postsynaptic AP with visually driven presynaptic inputs—modifies a neurons' AP-response in a bidirectional way that depends on the relative AP-timing during pairing. Whereas postsynaptic APs repeatedly following presynaptic activation can convert subthreshold into suprathreshold responses, APs repeatedly preceding presynaptic activation reduce AP responses to visual stimulation. These changes were paralleled by restructuring of the neurons response to surround stimulus locations and membrane-potential time-course. Computational simulations could reproduce the observed subthreshold voltage changes only when presynaptic temporal jitter was included. Together this shows that STDP rules can modify output patterns of sensory neurons and the timing of single-APs plays a crucial role in sensory coding and plasticity.


2020 ◽  
Author(s):  
Xin Su ◽  
Yury Kovalchuk ◽  
Nima Mojtahedi ◽  
Olga Garaschuk

AbstractAdult-born cells, arriving daily into the rodent olfactory bulb, either integrate into the neural circuitry or get eliminated. Whether these two populations differ in their morphological or functional properties remains, however, unclear. Using in vivo two-photon imaging, we monitored longitudinally the dendritic morphogenesis, odor-evoked responsiveness, endogenous Ca2+ signaling and survival/death of adult-born juxtaglomerular neurons (JGNs). We found that JGN maturation is accompanied by a significant reduction in dendritic complexity, with surviving and subsequently eliminated cells showing similar degrees of reduction and dendritic remodeling. Moreover, ∼63% of subsequently eliminated adult-born JGNs acquired odor-responsiveness before death, with amplitudes and time courses of odor-evoked responses similar to those recorded in the surviving cells. We observed, however, a significant long-lasting enhancement of the endogenous Ca2+ signaling in subsequently eliminated JGNs, visible already 6 days before death. These findings identify the ongoing endogenous Ca2+ signaling as a key predictor of the adult-born JGN’s fate.


2016 ◽  
Vol 54 (12) ◽  
pp. 1343-1404
Author(s):  
A Ghallab ◽  
R Reif ◽  
R Hassan ◽  
AS Seddek ◽  
JG Hengstler

2007 ◽  
Vol 40 (05) ◽  
Author(s):  
T Zetzsche ◽  
UW Preuss ◽  
T Frodl ◽  
D Watz ◽  
G Schmitt ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiang Lan Fan ◽  
Jose A. Rivera ◽  
Wei Sun ◽  
John Peterson ◽  
Henry Haeberle ◽  
...  

AbstractUnderstanding the structure and function of vasculature in the brain requires us to monitor distributed hemodynamics at high spatial and temporal resolution in three-dimensional (3D) volumes in vivo. Currently, a volumetric vasculature imaging method with sub-capillary spatial resolution and blood flow-resolving speed is lacking. Here, using two-photon laser scanning microscopy (TPLSM) with an axially extended Bessel focus, we capture volumetric hemodynamics in the awake mouse brain at a spatiotemporal resolution sufficient for measuring capillary size and blood flow. With Bessel TPLSM, the fluorescence signal of a vessel becomes proportional to its size, which enables convenient intensity-based analysis of vessel dilation and constriction dynamics in large volumes. We observe entrainment of vasodilation and vasoconstriction with pupil diameter and measure 3D blood flow at 99 volumes/second. Demonstrating high-throughput monitoring of hemodynamics in the awake brain, we expect Bessel TPLSM to make broad impacts on neurovasculature research.


2021 ◽  
Author(s):  
Li Li ◽  
Zheng Lv ◽  
Zhongwei Man ◽  
Zhenzhen Xu ◽  
YuLing Wei ◽  
...  

Amyloid fibrils are associated with many neurodegenerative diseases. In-situ and in-vivo visualization of amyloid fibrils is important for medical diagnostic and requires fluorescent probes with both excitation and emission wavelengths in...


Sign in / Sign up

Export Citation Format

Share Document