scholarly journals Food or physics: plankton communities structured across Gulf of Alaska eddies

2021 ◽  
Author(s):  
Caitlin Kroeger ◽  
Chelle Gentemann ◽  
Marisol García-Reyes ◽  
Sonia Batten ◽  
William Sydeman

Oceanic features, such as mesoscale eddies that entrap and transport water masses, create heterogeneous seascapes to which biological communities may respond. To date, however, our understanding of how internal eddy dynamics influence plankton community structuring is limited by sparse sampling of eddies and their associated biotic communities. In this paper, we used 10 years of archived Continuous Plankton Recorder (CPR) data (2002-2013) associated with 9 mesoscale eddies in the Northeast Pacific/Gulf of Alaska to test the hypothesis that eddy origin and rotational direction determines the structure and dynamics of entrained plankton communities. Using generalized additive models and accounting for confounding factors (e.g., timing of sampling), we found peak diatom abundance within both cyclonic and anticyclonic eddies near the eddy edge. Zooplankton abundances, however, varied with distance to the eddy center/edge by rotational type and eddy life stage, and differed by taxonomic group. For example, the greatest abundance of small copepods was found near the center of anticyclonic eddies during eddy maturation and decay, but near the edge of cyclonic eddies during eddy formation and intensification. Distributions of copepod abundances across eddy surfaces were not mediated by phytoplankton distribution. Our results therefore suggest that physical mechanisms such as internal eddy dynamics exert a direct impact on the structure of zooplankton communities rather than indirect mechanisms involving potential food resources.

2020 ◽  
Vol 83 (S1) ◽  
pp. 257 ◽  
Author(s):  
Maria Teresa Spedicato ◽  
Walter Zupa ◽  
Pierluigi Carbonara ◽  
Fabio Fiorentino ◽  
Maria Cristina Follesa ◽  
...  

Marine litter is one of the main sources of anthropogenic pollution in the marine ecosystem, with plastic representing a global threat. This paper aims to assess the spatial distribution of plastic macro-litter on the seafloor, identifying accumulation hotspots at a northern Mediterranean scale. Density indices (items km–2) from the MEDITS trawl surveys (years 2013-2015) were modelled by generalized additive models using a Delta-type approach and several covariates: latitude, longitude, depth, seafloor slope, surface oceanographic currents and distances from main ports. To set thresholds for the identification of accumulation areas, the percentiles (85th, 90th and 95th) of the plastic spatial density distribution were computed on the raster data. In the northern Mediterranean marine macro-litter was widespread (90.13% of the 1279 surveyed stations), with plastic by far the most recurrent category. The prediction map of the plastic density highlighted accumulation areas (85th, 90th and 95th percentiles of the distribution, respectively, corresponding to 147, 196 and 316 items km–2) in the Gulf of Lions, eastern Corsica, the eastern Adriatic Sea, the Argo-Saronic region and waters around southern Cyprus. Maximum densities were predicted in correspondence to the shallower depths and in proximity to populated areas (distance from the ports). Surface currents and local water circulation with cyclonic and anticyclonic eddies were identified as drivers likely facilitating the sinking to the bottoms of floating debris.


2020 ◽  
Vol 644 ◽  
pp. 15-31
Author(s):  
T Lipsewers ◽  
R Klais ◽  
MT Camarena-Gómez ◽  
K Spilling

Plankton communities and their temporal development have shifted towards earlier onset of the spring bloom and lower diatom-dinoflagellate proportions in parts of the Baltic Sea. We studied the effects of community composition and spring bloom phases on seston nutrient stoichiometry, revealing possible consequences of these shifts. Community composition, seston C:N:P:Si:chl a ratios, and physiological and environmental variables were determined for 4 research cruises, covering all major sub-basins and bloom phases. A redundancy analysis revealed that temperature and inorganic nutrients were the main drivers of community changes, and high diatom biomass was linked to low temperatures (growth phase). The effects of changing dominance patterns on seston stoichiometry were studied by applying a community ordination (non-metric multidimensional scaling and generalized additive models). C:N:P ratios increased from the growth phase (103:14:1) to the peak phase (144:18:1) and decreased after inorganic nitrogen was depleted (127:17:1). Taxonomic differences explained ~50% of changes in C:Si, N:Si, and chl a:C ratios and <30% for C:P and N:P, whereas C:N was virtually unaffected by the community composition. The fixed chl a:C range (~0.005-0.04) was largely determined by diatoms, independent of the dominant species. Thus, C:Si and N:Si could be used to estimate the share of diatoms to the seston and chl a:C to describe bloom phases and C budgets during spring. Interestingly, mixed communities featured higher C:N:P ratios than diatom-dominated ones. However, as community composition explained <30% of changes in C:N:P, we conclude that these ratios rather represent the total plankton physiology in natural plankton assemblages.


2020 ◽  
Vol 42 (3) ◽  
pp. 334-354 ◽  
Author(s):  
David G Kimmel ◽  
Janet T Duffy-Anderson

Abstract A multivariate approach was used to analyze spring zooplankton abundance in Shelikof Strait, western Gulf of Alaska. abundance of individual zooplankton taxa was related to environmental variables using generalized additive models. The most important variables that correlated with zooplankton abundance were water temperature, salinity and ordinal day (day of year when sample was collected). A long-term increase in abundance was found for the calanoid copepod Calanus pacificus, copepodite stage 5 (C5). A dynamic factor analysis (DFA) indicated one underlying trend in the multivariate environmental data that related to phases of the Pacific Decadal Oscillation. DFA of zooplankton time series also indicated one underlying trend where the positive phase was characterized by increases in the abundance of C. marshallae C5, C. pacificus C5, Eucalanus bungii C4, Pseudocalanus spp. C5 and Limacina helicina and declines in the abundance of Neocalanus cristatus C4 and Neocalanus spp. C4. The environmental and zooplankton DFA trends were not correlated over the length of the entire time period; however, the two time series were correlated post-2004. The strong relationship between environmental conditions, zooplankton abundance and time of sampling suggests that continued warming in the region may lead to changes in zooplankton community composition and timing of life history events during spring.


Author(s):  
François Freddy Ateba ◽  
Manuel Febrero-Bande ◽  
Issaka Sagara ◽  
Nafomon Sogoba ◽  
Mahamoudou Touré ◽  
...  

Mali aims to reach the pre-elimination stage of malaria by the next decade. This study used functional regression models to predict the incidence of malaria as a function of past meteorological patterns to better prevent and to act proactively against impending malaria outbreaks. All data were collected over a five-year period (2012–2017) from 1400 persons who sought treatment at Dangassa’s community health center. Rainfall, temperature, humidity, and wind speed variables were collected. Functional Generalized Spectral Additive Model (FGSAM), Functional Generalized Linear Model (FGLM), and Functional Generalized Kernel Additive Model (FGKAM) were used to predict malaria incidence as a function of the pattern of meteorological indicators over a continuum of the 18 weeks preceding the week of interest. Their respective outcomes were compared in terms of predictive abilities. The results showed that (1) the highest malaria incidence rate occurred in the village 10 to 12 weeks after we observed a pattern of air humidity levels >65%, combined with two or more consecutive rain episodes and a mean wind speed <1.8 m/s; (2) among the three models, the FGLM obtained the best results in terms of prediction; and (3) FGSAM was shown to be a good compromise between FGLM and FGKAM in terms of flexibility and simplicity. The models showed that some meteorological conditions may provide a basis for detection of future outbreaks of malaria. The models developed in this paper are useful for implementing preventive strategies using past meteorological and past malaria incidence.


Author(s):  
Mark David Walker ◽  
Mihály Sulyok

Abstract Background Restrictions on social interaction and movement were implemented by the German government in March 2020 to reduce the transmission of coronavirus disease 2019 (COVID-19). Apple's “Mobility Trends” (AMT) data details levels of community mobility; it is a novel resource of potential use to epidemiologists. Objective The aim of the study is to use AMT data to examine the relationship between mobility and COVID-19 case occurrence for Germany. Is a change in mobility apparent following COVID-19 and the implementation of social restrictions? Is there a relationship between mobility and COVID-19 occurrence in Germany? Methods AMT data illustrates mobility levels throughout the epidemic, allowing the relationship between mobility and disease to be examined. Generalized additive models (GAMs) were established for Germany, with mobility categories, and date, as explanatory variables, and case numbers as response. Results Clear reductions in mobility occurred following the implementation of movement restrictions. There was a negative correlation between mobility and confirmed case numbers. GAM using all three categories of mobility data accounted for case occurrence as well and was favorable (AIC or Akaike Information Criterion: 2504) to models using categories separately (AIC with “driving,” 2511. “transit,” 2513. “walking,” 2508). Conclusion These results suggest an association between mobility and case occurrence. Further examination of the relationship between movement restrictions and COVID-19 transmission may be pertinent. The study shows how new sources of online data can be used to investigate problems in epidemiology.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Narayan Sharma ◽  
René Schwendimann ◽  
Olga Endrich ◽  
Dietmar Ausserhofer ◽  
Michael Simon

Abstract Background Understanding how comorbidity measures contribute to patient mortality is essential both to describe patient health status and to adjust for risks and potential confounding. The Charlson and Elixhauser comorbidity indices are well-established for risk adjustment and mortality prediction. Still, a different set of comorbidity weights might improve the prediction of in-hospital mortality. The present study, therefore, aimed to derive a set of new Swiss Elixhauser comorbidity weightings, to validate and compare them against those of the Charlson and Elixhauser-based van Walraven weights in an adult in-patient population-based cohort of general hospitals. Methods Retrospective analysis was conducted with routine data of 102 Swiss general hospitals (2012–2017) for 6.09 million inpatient cases. To derive the Swiss weightings for the Elixhauser comorbidity index, we randomly halved the inpatient data and validated the results of part 1 alongside the established weighting systems in part 2, to predict in-hospital mortality. Charlson and van Walraven weights were applied to Charlson and Elixhauser comorbidity indices. Derivation and validation of weightings were conducted with generalized additive models adjusted for age, gender and hospital types. Results Overall, the Elixhauser indices, c-statistic with Swiss weights (0.867, 95% CI, 0.865–0.868) and van Walraven’s weights (0.863, 95% CI, 0.862–0.864) had substantial advantage over Charlson’s weights (0.850, 95% CI, 0.849–0.851) and in the derivation and validation groups. The net reclassification improvement of new Swiss weights improved the predictive performance by 1.6% on the Elixhauser-van Walraven and 4.9% on the Charlson weights. Conclusions All weightings confirmed previous results with the national dataset. The new Swiss weightings model improved slightly the prediction of in-hospital mortality in Swiss hospitals. The newly derive weights support patient population-based analysis of in-hospital mortality and seek country or specific cohort-based weightings.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1252.2-1253
Author(s):  
R. Garofoli ◽  
M. Resche-Rigon ◽  
M. Dougados ◽  
D. Van der Heijde ◽  
C. Roux ◽  
...  

Background:Axial spondyloarthritis (axSpA) is a chronic rheumatic disease that encompasses various clinical presentations: inflammatory chronic back pain, peripheral manifestations and extra-articular manifestations. The current nomenclature divides axSpA in radiographic (in the presence of radiographic sacroiliitis) and non-radiographic (in the absence of radiographic sacroiliitis, with or without MRI sacroiliitis. Given that the functional burden of the disease appears to be greater in patients with radiographic forms, it seems crucial to be able to predict which patients will be more likely to develop structural damage over time. Predictive factors for radiographic progression in axSpA have been identified through use of traditional statistical models like logistic regression. However, these models present some limitations. In order to overcome these limitations and to improve the predictive performance, machine learning (ML) methods have been developed.Objectives:To compare ML models to traditional models to predict radiographic progression in patients with early axSpA.Methods:Study design: prospective French multicentric cohort study (DESIR cohort) with 5years of follow-up. Patients: all patients included in the cohort, i.e. 708 patients with inflammatory back pain for >3 months but <3 years, highly suggestive of axSpA. Data on the first 5 years of follow-up was used. Statistical analyses: radiographic progression was defined as progression either at the spine (increase of at least 1 point per 2 years of mSASSS scores) or at the sacroiliac joint (worsening of at least one grade of the mNY score between 2 visits). Traditional modelling: we first performed a bivariate analysis between our outcome (radiographic progression) and explanatory variables at baseline to select the variables to be included in our models and then built a logistic regression model (M1). Variable selection for traditional models was performed with 2 different methods: stepwise selection based on Akaike Information Criterion (stepAIC) method (M2), and the Least Absolute Shrinkage and Selection Operator (LASSO) method (M3). We also performed sensitivity analysis on all patients with manual backward method (M4) after multiple imputation of missing data. Machine learning modelling: using the “SuperLearner” package on R, we modelled radiographic progression with stepAIC, LASSO, random forest, Discrete Bayesian Additive Regression Trees Samplers (DBARTS), Generalized Additive Models (GAM), multivariate adaptive polynomial spline regression (polymars), Recursive Partitioning And Regression Trees (RPART) and Super Learner. Finally, the accuracy of traditional and ML models was compared based on their 10-foldcross-validated AUC (cv-AUC).Results:10-fold cv-AUC for traditional models were 0.79 and 0.78 for M2 and M3, respectively. The 3 best models in the ML algorithm were the GAM, the DBARTS and the Super Learner models, with 10-fold cv-AUC of: 0.77, 0.76 and 0.74, respectively (Table 1).Table 1.Comparison of 10-fold cross-validated AUC between best traditional and machine learning models.Best modelsCross-validated AUCTraditional models M2 (step AIC method)0.79 M3 (LASSO method)0.78Machine learning approach SL Discrete Bayesian Additive Regression Trees Samplers (DBARTS)0.76 SL Generalized Additive Models (GAM)0.77 Super Learner0.74AUC: Area Under the Curve; AIC: Akaike Information Criterion; LASSO: Least Absolute Shrinkage and Selection Operator; SL: SuperLearner. N = 295.Conclusion:Traditional models predicted better radiographic progression than ML models in this early axSpA population. Further ML algorithms image-based or with other artificial intelligence methods (e.g. deep learning) might perform better than traditional models in this setting.Acknowledgments:Thanks to the French National Society of Rheumatology and the DESIR cohort.Disclosure of Interests:Romain Garofoli: None declared, Matthieu resche-rigon: None declared, Maxime Dougados Grant/research support from: AbbVie, Eli Lilly, Merck, Novartis, Pfizer and UCB Pharma, Consultant of: AbbVie, Eli Lilly, Merck, Novartis, Pfizer and UCB Pharma, Speakers bureau: AbbVie, Eli Lilly, Merck, Novartis, Pfizer and UCB Pharma, Désirée van der Heijde Consultant of: AbbVie, Amgen, Astellas, AstraZeneca, BMS, Boehringer Ingelheim, Celgene, Cyxone, Daiichi, Eisai, Eli-Lilly, Galapagos, Gilead Sciences, Inc., Glaxo-Smith-Kline, Janssen, Merck, Novartis, Pfizer, Regeneron, Roche, Sanofi, Takeda, UCB Pharma; Director of Imaging Rheumatology BV, Christian Roux: None declared, Anna Moltó Grant/research support from: Pfizer, UCB, Consultant of: Abbvie, BMS, MSD, Novartis, Pfizer, UCB


Sign in / Sign up

Export Citation Format

Share Document