scholarly journals Mesodiencephalic junction Gabaergic inputs are processed separately from motor cortical inputs in the basilar pons

2021 ◽  
Author(s):  
Ayoub J Khalil ◽  
Huib Mansvelder ◽  
Laurens Witter

The basilar pontine nuclei (bPN) receive inputs from the entire neocortex and constitute the main source of mossy fibers to the cerebellum. Despite their critical position in the cortico-cerebellar pathway, it remains unclear if and how the bPN process inputs. An important unresolved question is whether the bPN strictly receives excitatory inputs or also receives inhibitory inputs. In the present study, we identified the mesodiencephalic junction as a prominent source of GABAergic afferents to the bPN. We combined optogenetics and whole-cell patch clamp recordings and confirmed that the bPN indeed receives monosynaptic GABA inputs from this region. Furthermore, we found no evidence that these inhibitory inputs converge with motor cortex (M1) inputs at the single neuron level. We also found no evidence of any connectivity between bPN neurons, suggesting the absence of a local circuit. Finally, rabies tracings revealed that GABAergic MDJ neurons themselves receive prominent inputs from neocortical output neurons. Our data indicates that inhibition from the MDJ, and excitation from the neocortex remain separate streams of information through the bPN. It is therefore unlikely that inhibition in the bPN has a gating function, but rather shapes an appropriate output of the bPN during behavior.

2021 ◽  
Vol 22 (6) ◽  
pp. 3177
Author(s):  
Joanna K. Bujak ◽  
Daria Kosmala ◽  
Kinga Majchrzak-Kuligowska ◽  
Piotr Bednarczyk

TRPV1, known as a capsaicin receptor, is the best-described transient receptor potential (TRP) ion channel. Recently, it was shown to be expressed by non-excitable cells such as lymphocytes. However, the data regarding the functional expression of the TRPV1 channel in the immune cells are often contradictory. In the present study, we performed a phylogenetical analysis of the canine TRP ion channels, we assessed the expression of TRPV1 in the canine peripheral blood mononuclear cells (PBMC) by qPCR and Western blot, and we determined the functionality of TRPV1 by whole-cell patch-clamp recordings and calcium assay. We found high expression of TRPV2, -M2, and -M7 in the canine PBMCs, while expression of TRPV1, -V4 and, -M5 was relatively low. We confirmed that TRPV1 is expressed on the protein level in the PBMC and it localizes in the plasma membrane. The whole-cell patch-clamp recording revealed that capsaicin application caused a significant increase in the current density. Similarly, the results from the calcium assay show a dose-dependent increase in intracellular calcium level in the presence of capsaicin that was partially abolished by capsazepine. Our study confirms the expression of TRPV1 ion channel on both mRNA and protein levels in the canine PBMC and indicates that the ion channel is functional.


2010 ◽  
Vol 104 (1) ◽  
pp. 258-270 ◽  
Author(s):  
James G. Heys ◽  
Lisa M. Giocomo ◽  
Michael E. Hasselmo

In vitro whole cell patch-clamp recordings of stellate cells in layer II of medial entorhinal cortex show a subthreshold membrane potential resonance in response to a sinusoidal current injection of varying frequency. Physiological recordings from awake behaving animals show that neurons in layer II medial entorhinal cortex, termed “grid cells,” fire in a spatially selective manner such that each cell's multiple firing fields form a hexagonal grid. Both the spatial periodicity of the grid fields and the resonance frequency change systematically in neurons along the dorsal to ventral axis of medial entorhinal cortex. Previous work has also shown that grid field spacing and acetylcholine levels change as a function of the novelty to a particular environment. Using in vitro whole cell patch-clamp recordings, our study shows that both resonance frequency and resonance strength vary as a function of cholinergic modulation. Furthermore, our data suggest that these changes in resonance properties are mediated through modulation of h-current and m-current.


Sign in / Sign up

Export Citation Format

Share Document