scholarly journals Highly-Sensitive Lineage Discrimination of SARS-CoV-2 Variants through Allele-Specific Probe Polymerase Chain Reaction

Author(s):  
Jeremy D Ratcliff ◽  
Farah Al-Beidh ◽  
Sagida Bibi ◽  
David Bonsall ◽  
Sue Ann Costa Clemens ◽  
...  

Introduction: Tools to detect SARS-Coronavirus-2 variants of concern and track the ongoing evolution of the virus are necessary to support ongoing public health efforts and the design and evaluation of novel COVID-19 therapeutics and vaccines. Although next-generation sequencing (NGS) has been adopted as the gold standard method for discriminating SARS-CoV-2 lineages, alternative methods may be required when processing samples with low viral loads or low RNA quality. Methods: An allele-specific probe polymerase chain reaction (ASP-PCR) targeting lineage-specific single nucleotide polymorphisms (SNPs) was developed and used to screen 1,082 samples from two clinical trials in the United Kingdom and Brazil. Probit regression models were developed to compare ASP-PCR performance against 1,771 NGS results for the same cohorts. Results: Individual SNPs were shown to readily identify specific variants of concern. ASP-PCR was shown to discriminate SARS-CoV-2 lineages with a higher likelihood than NGS over a wide range of viral loads. Comparative advantage for ASP-PCR over NGS was most pronounced in samples with Ct values between 26-30 and in samples that showed evidence of degradation. Results for samples screened by ASP-PCR and NGS showed 99% concordant results. Discussion: ASP-PCR is well-suited to augment but not replace NGS. The method can differentiate SARS-COV-2 lineages with high accuracy and would be best deployed to screen samples with lower viral loads or that may suffer from degradation. Future work should investigate further destabilization from primer:target base mismatch through altered oligonucleotide chemistry or chemical additives.

2018 ◽  
Vol 42 (5) ◽  
pp. 163-169
Author(s):  
Rokhsareh Jafaryazdi ◽  
Shahram Teimourian

AbstractMucopolysaccharidosis type VI (MPS VI) results from a defect in arylsulfatase B (ARSB). There are several diagnostic methods using to identify patients; hence, we aimed to review these approaches and consider if one of them could be assigned as the gold standard method. The information of this study was obtained by searching through PubMed and Google scholar databases. In order to collect the most accurate and up to date data, we limited our research to papers in the time period between 2010 and 2017. We collected articles related to our research and extracted the most relevant and accurate data which included the steps of MPS VI diagnosis by routine laboratory approaches. We concluded that an all-inclusive diagnostic approach requires urinary glycosaminoglycan (GAG) analysis, enzyme activity analysis and molecular analysis by mutation scanning through polymerase chain reaction (PCR) and Sanger sequencing or alternative methods such as multiplex ligation-dependent probe amplification (MLPA), real-time polymerase chain reaction, array-comparative genomic hybridization (aCGH) and next generation sequencing (NGS). Reliable classification of patients with MPS VI is necessary for ongoing and future studies on treatments, outcomes and prenatal diagnoses (PNDs). The dependable characterization of patients would be achieved by biochemical techniques and enzymatic assay. However, if a molecular defect is previously identified in the family, PND via mutation scanning is possible.


2021 ◽  
pp. 030098582199156
Author(s):  
Alexandra N. Myers ◽  
Unity Jeffery ◽  
Zachary G. Seyler ◽  
Sara D. Lawhon ◽  
Aline Rodrigues Hoffmann

Molecular techniques are increasingly being applied to stained cytology slides for the diagnosis of neoplastic and infectious diseases. Such techniques for the identification of fungi from stained cytology slides have not yet been evaluated. This study aimed to assess the diagnostic accuracy of direct (without nucleic acid isolation) panfungal polymerase chain reaction (PCR) followed by sequencing for identification of fungi and oomycetes on stained cytology slides from dogs, cats, horses, and other species. Thirty-six cases were identified with cytologically identifiable fungi/oomycetes and concurrent identification via fungal culture or immunoassay. Twenty-nine controls were identified with no cytologically or histologically visible organisms and a concurrent negative fungal culture. Direct PCR targeting the internal transcribed spacer region followed by sequencing was performed on one cytology slide from each case and control, and the sensitivity and specificity of the assay were calculated. The sensitivity of the panfungal PCR assay performed on stained cytology slides was 67% overall, 73% excluding cases with oomycetes, and 86% when considering only slides with abundant fungi. The specificity was 62%, which was attributed to amplification of fungal DNA from control slides with no visible fungus and negative culture results. Direct panfungal PCR is capable of providing genus- or species-level identification of fungi from stained cytology slides. Given the potential of panfungal PCR to amplify contaminant fungal DNA, this assay should be performed on slides with visible fungi and interpreted in conjunction with morphologic assessment by a clinical pathologist.


BMJ ◽  
2021 ◽  
pp. n1637 ◽  
Author(s):  
Marta García-Fiñana ◽  
David M Hughes ◽  
Christopher P Cheyne ◽  
Girvan Burnside ◽  
Mark Stockbridge ◽  
...  

Abstract Objective To assess the performance of the SARS-CoV-2 antigen rapid lateral flow test (LFT) versus polymerase chain reaction testing in the asymptomatic general population attending testing centres. Design Observational cohort study. Setting Community LFT pilot at covid-19 testing sites in Liverpool, UK. Participants 5869 asymptomatic adults (≥18 years) voluntarily attending one of 48 testing sites during 6-29 November 2020. Interventions Participants were tested using both an Innova LFT and a quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) test based on supervised self-administered swabbing at testing sites. Main outcome measures Sensitivity, specificity, and predictive values of LFT compared with RT-qPCR in an epidemic steady state of covid-19 among adults with no classic symptoms of the disease. Results Of 5869 test results, 22 (0.4%) LFT results and 343 (5.8%) RT-qPCR results were void (that is, when the control line fails to appear within 30 minutes). Excluding the void results, the LFT versus RT-qPCR showed a sensitivity of 40.0% (95% confidence interval 28.5% to 52.4%; 28/70), specificity of 99.9% (99.8% to 99.99%; 5431/5434), positive predictive value of 90.3% (74.2% to 98.0%; 28/31), and negative predictive value of 99.2% (99.0% to 99.4%; 5431/5473). When the void samples were assumed to be negative, a sensitivity was observed for LFT of 37.8% (26.8% to 49.9%; 28/74), specificity of 99.6% (99.4% to 99.8%; 5431/5452), positive predictive value of 84.8% (68.1% to 94.9%; 28/33), and negative predictive value of 93.4% (92.7% to 94.0%; 5431/5814). The sensitivity in participants with an RT-qPCR cycle threshold (Ct) of <18.3 (approximate viral loads >10 6 RNA copies/mL) was 90.9% (58.7% to 99.8%; 10/11), a Ct of <24.4 (>10 4 RNA copies/mL) was 69.4% (51.9% to 83.7%; 25/36), and a Ct of >24.4 (<10 4 RNA copies/mL) was 9.7% (1.9% to 23.7%; 3/34). LFT is likely to detect at least three fifths and at most 998 in every 1000 people with a positive RT-qPCR test result with high viral load. Conclusions The Innova LFT can be useful for identifying infections among adults who report no symptoms of covid-19, particularly those with high viral load who are more likely to infect others. The number of asymptomatic adults with lower Ct (indicating higher viral load) missed by LFT, although small, should be considered when using single LFT in high consequence settings. Clear and accurate communication with the public about how to interpret test results is important, given the chance of missing some cases, even at high viral loads. Further research is needed to understand how infectiousness is reflected in the viral antigen shedding detected by LFT versus the viral loads approximated by RT-qPCR.


2011 ◽  
Vol 12 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Nazar M Abdalla

Objective: This study aimed to identify cases of leishmaniasis in the Nuba Mountain area, which is situated in a unique geographical site located in the centre of Sudanese leishmania belt. Wide range of investigations are available for detection of leishmania cases, but still the most reliable and easy test used as screening and epidemiological tool in field studies needs to be evaluated. The most commonly used conventional diagnostic methods direct microscopy and culture have some drawbacks in diagnosing subclinical cases of leishmaniasis. Materials and methods: In this study, comparative properties of various immune-diagnostic tools with Polymerase Chain Reaction used in sub-clinical leishmaniasis isolates were explored. The immune-diagnostic tools involved in this study include- Leishmanin Skin Test (LST), Enzyme Linked Immunosorbent Assay (ELISA) and Direct Agglutination Test (DAT). The study was conducted in the Green Valley village (Rashad Province, South Kordofan State) with a population of 332. Most of the villagers presented with sub-clinical form of leishmaniasis with minor symptoms and signs without the features found in clinical form of visceral leishmaniasis such as fever, diarrhoea, epistaxis, enlarged lymph nodes, spleen and liver. In this study we collected demographic, clinical and epidemiological data using special questionnaire. Leishmanin skin test (LST), ELISA, DAT and PCR for parasite DNA detection were used. Result: The final positive cases detected by PCR were 32 out of 332 belong to L. donovani species. The final positive cases detected by LST were 51.2% of the total population under study, while 11 out of the 37 tested samples were positive by ELISA. All of the 332 villagers showed negative readings by DAT with exception of three individuals who were positive with very high titers. Conclusion: DNA etxtraction and amplification with primers can be a good screening tool in subclinical leishmaniasis isolates. Keyword: Sub-clinical; Leishmaniasis; Leishmanin Skin Test; ELISA; DAT; PCR. DOI: 10.3329/jom.v12i1.5422J Medicine 2011; 12 : 34-39


1991 ◽  
Vol 37 (5) ◽  
pp. 753-755 ◽  
Author(s):  
K J Friedman ◽  
W E Highsmith ◽  
L M Silverman

Abstract The polymerase chain reaction (PCR) has been applied in a novel manner to detect the multiple mutations causing cystic fibrosis (CF). PCR-mediated site-directed mutagenesis (PSM) has been applied to create allele-specific restriction enzyme cutting sites for three of the more common mutations. Two other mutations after cutting sites on their own. We discuss the implications for the expedient detection of five different CF-causing mutations.


Sign in / Sign up

Export Citation Format

Share Document