scholarly journals A new prognostic model for pancreatic cancer based on pyroptosis-related genes

2021 ◽  
Author(s):  
Liukai Ma ◽  
Ruoling Jia ◽  
Mengyao Wang ◽  
Cheng Yan

Pancreatic cancer is one of the most common malignant tumors of the digestive tract. It is known as the "king of cancer" in the field of cancer, and is one of the worst prognosis malignant tumors. pyroptosis is a kind of programmed cell death, which can promote the inflammatory response of cells. Studies have shown that the effect of pyroptosis-related genes in cancer is significant. However, the role of pyroptosis in pancreatic cancer is not clear. The aim of this study is to establish a prognostic model based on pyroptosis. The gene expression and clinical data of pancreatic cancer patients were obtained from TCGA and verified in GEO. The differential expression of 33 pyroptosis-related genes in pancreatic cancer and normal tissues was analyzed, of which 6 genes were up-regulated and 12 genes were down regulated. Then, it was analyzed that pyroptosis-related genes were mainly enriched in the defense against bacteria and pyroptosis pathways. A concise and reliable model is established by lasso-cox regression analysis. Km curve shows that there are differences between high-risk group and low-risk group. And the nomogram has reliable prediction ability. In conclusion, pyroptosis an important role in pancreatic cancer, which can be used for the prediction of pancreatic cancer and provide a new perspective for the treatment of pancreatic cancer.

2021 ◽  
Author(s):  
Sijia Li ◽  
Hongyang Zhang ◽  
Wei Li

Abstract Background: The purpose of our study is establishing a model based on ferroptosis-related genes predicting the prognosis of patients with head and neck squamous cell carcinoma (HNSCC).Methods: In our study, transcriptome and clinical data of HNSCC patients were from The Cancer Genome Atlas, ferroptosis-related genes and pathways were from Ferroptosis Signatures Database. Differentially expressed genes (DEGs) were screened by comparing tumor and adjacent normal tissues. Functional enrichment analysis of DEGs, protein-protein interaction network and gene mutation examination were applied. Univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression were used to identified DEGs. The model was constructed by multivariate Cox regression analysis and verified by Kaplan-Meier analysis. The relationship between risk scores and other clinical features was also analyzed. Univariate and multivariate Cox analysis was used to verified the independence of our model. The model was evaluated by receiver operating characteristic analysis and calculation of the area under the curve (AUC). A nomogram model based on risk score, age, gender and TNM stages was constructed.Results: We analyzed data including 500 tumor tissues and 44 adjacent normal tissues and 259 ferroptosis-related genes, then obtained 73 DEGs. Univariate Cox regression analysis screened out 16 genes related to overall survival, and LASSO analysis fingered out 12 of them with prognostic value. A risk score model based on these 12 genes was constructed by multivariate Cox regression analysis. According to the median risk score, patients were divided into high-risk group and low-risk group. The survival rate of high-risk group was significantly lower than that of low-risk group in Kaplan-Meier curve. Risk scores were related to T and grade. Univariate and multivariate Cox analysis showed our model was an independent prognostic factor. The AUC was 0.669. The nomogram showed high accuracy predicting the prognosis of HNSCC patients.Conclusion: Our model based on 12 ferroptosis-related genes performed excellently in predicting the prognosis of HNSCC patients. Ferroptosis-related genes may be promising biomarkers for HNSCC treatment and prognosis.


2021 ◽  
Author(s):  
Jiahui Tian ◽  
yi wu ◽  
Xuan Zeng ◽  
Xiaoxiao Fang ◽  
Chunyan Fu

Abstract Purpose Pancreatic cancer(PC) is a common cancer with high lethality and low survival rate. Autophagy is involved in the biological process of PC. Thus, we intended to explore the function of autophagy-related long noncoding RNA signature for survival assessment in PC. Methods Based on 10 autophagy-related lncRNAs, the prognostic model was attained through univariate and multivariate Cox regression analysis. Subsequently, the relationship network of 10 lncRNAs was crystallized in co-expression network and Sankey diagram. Survival analysis and ROC curve were used to evaluate the signature. GSEA was utilized to screen enriched gene sets. Result The OS has significant deference in low-risk group and high-risk group(P < 0.001). The ROC curve further proved the potential utility of the signature(AUC = 0.815). GSEA was significantly enriched in cancer-related gene sets. Conclusion The signature has potential to evaluate clinical prognosis in PC. The 10 autophagy-related lncRNAs may achieve great development for PC in target therapy field.


2021 ◽  
Vol 7 ◽  
Author(s):  
Xiaoyu Deng ◽  
Qinghua Bi ◽  
Shihan Chen ◽  
Xianhua Chen ◽  
Shuhui Li ◽  
...  

Although great progresses have been made in the diagnosis and treatment of hepatocellular carcinoma (HCC), its prognostic marker remains controversial. In this current study, weighted correlation network analysis and Cox regression analysis showed significant prognostic value of five autophagy-related long non-coding RNAs (AR-lncRNAs) (including TMCC1-AS1, PLBD1-AS1, MKLN1-AS, LINC01063, and CYTOR) for HCC patients from data in The Cancer Genome Atlas. By using them, we constructed a five-AR-lncRNA prognostic signature, which accurately distinguished the high- and low-risk groups of HCC patients. All of the five AR lncRNAs were highly expressed in the high-risk group of HCC patients. This five-AR-lncRNA prognostic signature showed good area under the curve (AUC) value (AUC = 0.751) for the overall survival (OS) prediction in either all HCC patients or HCC patients stratified according to several clinical traits. A prognostic nomogram with this five-AR-lncRNA signature predicted the 3- and 5-year OS outcomes of HCC patients intuitively and accurately (concordance index = 0.745). By parallel comparison, this five-AR-lncRNA signature has better prognosis accuracy than the other three recently published signatures. Furthermore, we discovered the prediction ability of the signature on therapeutic outcomes of HCC patients, including chemotherapy and immunotherapeutic responses. Gene set enrichment analysis and gene mutation analysis revealed that dysregulated cell cycle pathway, purine metabolism, and TP53 mutation may play an important role in determining the OS outcomes of HCC patients in the high-risk group. Collectively, our study suggests a new five-AR-lncRNA prognostic signature for HCC patients.


Author(s):  
Peng Gu ◽  
Lei Zhang ◽  
Ruitao Wang ◽  
Wentao Ding ◽  
Wei Wang ◽  
...  

Background: Female breast cancer is currently the most frequently diagnosed cancer in the world. This study aimed to develop and validate a novel hypoxia-related long noncoding RNA (HRL) prognostic model for predicting the overall survival (OS) of patients with breast cancer.Methods: The gene expression profiles were downloaded from The Cancer Genome Atlas (TCGA) database. A total of 200 hypoxia-related mRNAs were obtained from the Molecular Signatures Database. The co-expression analysis between differentially expressed hypoxia-related mRNAs and lncRNAs based on Spearman’s rank correlation was performed to screen out 166 HRLs. Based on univariate Cox regression and least absolute shrinkage and selection operator Cox regression analysis in the training set, we filtered out 12 optimal prognostic hypoxia-related lncRNAs (PHRLs) to develop a prognostic model. Kaplan–Meier survival analysis, receiver operating characteristic curves, area under the curve, and univariate and multivariate Cox regression analyses were used to test the predictive ability of the risk model in the training, testing, and total sets.Results: A 12-HRL prognostic model was developed to predict the survival outcome of patients with breast cancer. Patients in the high-risk group had significantly shorter median OS, DFS (disease-free survival), and predicted lower chemosensitivity (paclitaxel, docetaxel) compared with those in the low-risk group. Also, the risk score based on the expression of the 12 HRLs acted as an independent prognostic factor. The immune cell infiltration analysis revealed that the immune scores of patients in the high-risk group were lower than those of the patients in the low-risk group. RT-qPCR assays were conducted to verify the expression of the 12 PHRLs in breast cancer tissues and cell lines.Conclusion: Our study uncovered dozens of potential prognostic biomarkers and therapeutic targets related to the hypoxia signaling pathway in breast cancer.


2021 ◽  
Author(s):  
Sijia Li ◽  
Hongyang Zhang ◽  
Wei Li

Abstract Background: The purpose of our study is establishing a model based on ferroptosis-related genes predicting the prognosis of patients with head and neck squamous cell carcinoma (HNSCC).Methods: In our study, transcriptome and clinical data of HNSCC patients were from The Cancer Genome Atlas, ferroptosis-related genes and pathways were from Ferroptosis Signatures Database. Differentially expressed genes (DEGs) were screened by comparing tumor and adjacent normal tissues. Functional enrichment analysis of DEGs, protein-protein interaction network and gene mutation examination were applied. Univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression were used to identified DEGs. The model was constructed by multivariate Cox regression analysis and verified by Kaplan-Meier analysis. The relationship between risk scores and other clinical features was also analyzed. Univariate and multivariate Cox analysis was used to verified the independence of our model. The model was evaluated by receiver operating characteristic analysis and calculation of the area under the curve (AUC). A nomogram model based on risk score, age, gender and TNM stages was constructed. Our model was also validated in the Gene Expression Omnibus (GEO) verification set. Results: We analyzed data including 500 tumor tissues and 44 adjacent normal tissues and 259 ferroptosis-related genes, then obtained 73 DEGs. Univariate Cox regression analysis screened out 16 genes related to overall survival, and LASSO analysis fingered out 12 of them with prognostic value. A risk score model based on these 12 genes was constructed by multivariate Cox regression analysis. According to the median risk score, patients were divided into high-risk group and low-risk group. The survival rate of high-risk group was significantly lower than that of low-risk group in Kaplan-Meier curve. Risk scores were related to T and grade. Univariate and multivariate Cox analysis showed our model was an independent prognostic factor. The AUC was 0.669. Those all could prove our model had great predictive ability of HNSCC prognosis and it could be validated in GEO dataset. The nomogram showed high accuracy predicting the prognosis of HNSCC patients.Conclusion: Our model based on 12 ferroptosis-related genes performed excellently in predicting the prognosis of HNSCC patients. Ferroptosis-related genes may be promising biomarkers for HNSCC treatment and prognosis.


2021 ◽  
Author(s):  
Zhian Ling ◽  
Yuting Liang ◽  
Suping Wei ◽  
Yuanming Chen ◽  
Jinmin Zhao

Abstract Background N6-methylandenosine (m6A) methylation is one of the most common methylation modifications in RNA. At present, a large number of studies have found that m6A methylation can regulate the occurrence and development of tumors by modifying mRNA. However, it is still unclear how m6A modifies Long non-coding RNA (lncRNA) that regulates mRNA expression by interacting with miRNA to affect the occurrence and development of osteosarcoma(OS). Therefore, exploring the lncRNAs related to m6A methylation and identifying lncRNAs that have both prognostic effects and immune functions are things that need to be solved urgently. Methods The published gene expression data of OS and complete clinical annotation files were obtained from the TARGET database. LncRNAs with P <0.001 from the results of Pearson correlation coefficient analysis as m6A-related lncRNAs were screened. Single-factor Cox regression analysis was used to screening prognostic- related lncRNA combined with the clinical information of patients and constructed a prognostic model based on lasso regression analysis. Then we explored the differences in survival and immune function of different subtypes that be obtained using the Consensus Cluster. The enrichment of differential genes between high and low risk groups in the KEGG pathway is achieved through Gene set enrichment analysis(GSEA). Results We obtained 706 lncRNAs in the TARGET database. Consensus clustering method were used to divide patients with OS into subgroups based on the expression of 26 prognostic-related lncRNAs. Through Kaplan-Meier survival analysis, there are significant differences between the two subgroups. The average immune score (P = 0.02), stromal score(P =0.027), and estimate score༈P = 0.015༉were higher in cluster 1 than in cluster 2. We found that compared with cluster 2, SIGLEC15, HAVCR2, LAG3, and PDCD1 were highly expressed in cluster 1.We obtain a prognostic model by lasso regression analysis. In the training group and the text group, the OS curve showed that patients in the high-risk group had a poorer prognosis than those in the low-risk group. In the training set, univariate Cox regression analysis and multivariate Cox regression analysis showed that the risk score was correlated with the prognosis of OS patients. In the high-risk group, the Linoleic acid metabolism and the Glycine, serine and threonine metabolism pathway were mainly involved by Gene Set Enrichment analysis. The abundance of Mast cells activated (P ≦0.024) and T cells CD4 (P ≦0.0044) naive were positively association the risk score. Conclusions This study clarified the important role of m6A-related lncRNAs in the prognosis and immune microenvironment of patients with OS, and indicate that m6A-related prognostic lncRNA signals may provide new targets for the diagnosis and treatment of OS.


2021 ◽  
Author(s):  
Shaopei Ye ◽  
Wenbin Tang ◽  
Ke Huang

Abstract Background: Autophagy is a biological process to eliminate dysfunctional organelles, aggregates or even long-lived proteins. . Nevertheless, the potential function and prognostic values of autophagy in Wilms Tumor (WT) are complex and remain to be clarifed. Therefore, we proposed to systematically examine the roles of autophagy-associated genes (ARGs) in WT.Methods: Here, we obtained differentially expressed autophagy-related genes (ARGs) between healthy and Wilms tumor from Therapeutically Applicable Research To Generate Effective Treatments(TARGET) and The Cancer Genome Atlas (TCGA) database. The functionalities of the differentially expressed ARGs were analyzed using Gene Ontology. Then univariate COX regression analysis and multivariate COX regression analysis were performed to acquire nine autophagy genes related to WT patients’ survival. According to the risk score, the patients were divided into high-risk and low-risk groups. The Kaplan-Meier curve demonstrated that patients with a high-risk score tend to have a poor prognosis.Results: Eighteen DEARGs were identifed, and nine ARGs were fnally utilized to establish the FAGs based signature in the TCGA cohort. we found that patients in the high-risk group were associated with mutations in TP53. We further conducted CIBERSORT analysis, and found that the infiltration of Macrophage M1 was increased in the high-risk group. Finally, the expression levels of crucial ARGs were verifed by the experiment, which were consistent with our bioinformatics analysis.Conclusions: we emphasized the clinical significance of autophagy in WT, established a prediction system based on autophagy, and identified a promising therapeutic target of autophagy for WT.


2021 ◽  
Vol 20 ◽  
pp. 153303382110414
Author(s):  
Xiaoyong Li ◽  
Jiaqong Lin ◽  
Yuguo pan ◽  
Peng Cui ◽  
Jintang Xia

Background: Liver progenitor cells (LPCs) play significant roles in the development and progression of hepatocellular carcinoma (HCC). However, no studies on the value of LPC-related genes for evaluating HCC prognosis exist. We developed a gene signature of LPC-related genes for prognostication in HCC. Methods: To identify LPC-related genes, we analyzed mRNA expression arrays from a dataset (GSE57812 & GSE 37071) containing LPCs, mature hepatocytes, and embryonic stem cell samples. HCC RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to explore the differentially expressed genes (DEGs) related to prognosis through DEG analysis and univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed to construct the LPC-related gene prognostic model in the TCGA training dataset. This model was validated in the TCGA testing set and an external dataset (International Cancer Genome Consortium [ICGC] dataset). Finally, we investigated the relationship between this prognostic model with tumor-node-metastasis stage, tumor grade, and vascular invasion of HCC. Results: Overall, 1770 genes were identified as LPC-related genes, of which 92 genes were identified as DEGs in HCC tissues compared with normal tissues. Furthermore, we randomly assigned patients from the TCGA dataset to the training and testing cohorts. Twenty-six DEGs correlated with overall survival (OS) in the univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed in the TCGA training set, and a 3-gene signature was constructed to stratify patients into 2 risk groups: high-risk and low-risk. Patients in the high-risk group had significantly lower OS than those in the low-risk group. Receiver operating characteristic curve analysis confirmed the signature's predictive capacity. Moreover, the risk score was confirmed to be an independent predictor for patients with HCC. Conclusion: We demonstrated that the LPC-related gene signature can be used for prognostication in HCC. Thus, targeting LPCs may serve as a therapeutic alternative for HCC.


2021 ◽  
Author(s):  
Menglin He ◽  
Cheng Hu ◽  
Jian Deng ◽  
Hui Ji ◽  
Weiqian Tian

Abstract Background: Breast cancer (BC) is a kind of cancer with high incidence and mortality in female. Conventional clinical characteristics are far from accurate to predict individual outcomes. Therefore, we aimed to develop a novel signature to predict the survival of patients with BC. Methods: We analyzed the data of a training cohort from the TCGA database and a validation cohort from GEO database. After the applications of GSEA and Cox regression analyses, a glycolysis-related signature for predicting the survival of patients with BC was developed. The signature contains AK3, CACNA1H, IL13RA1, NUP43, PGK1, and SDC1. Then, we constructed a risk score formula to classify the patients into high and low-risk groups based on the expression levels of six-gene in patients. The receiver operating characteristic (ROC) curve and the Kaplan-Meier curve were used to assess the predicted capacity of the model. Next, a nomogram was developed to predict the outcomes of patients with risk score and clinical features in 1, 3, and 5 years. We further used Human Protein Atlas (HPA) database to validate the expressions of the six biomarkers in tumor and sample tissues.Results: We constructed a six-gene signature to predict the outcomes of patients with BC. The patients in high-risk group showed poor prognosis than that in low-risk group. The AUC values were 0.719 and 0.702, showing that the prediction performance of the signature is acceptable. Additionally, Cox regression analysis revealed that these biomarkers could independently predict the prognosis of BC patients without being affected by clinical factors. The expression levels of all six biomarkers in BC tissues were higher than that in normal tissues except AK3. Conclusion: We developed a six-gene signature to predict the prognosis of patients with BC. Our signature has been proved to have the ability to make an accurate and obvious prediction and might be used to expand the prediction methods in clinical.


2020 ◽  
Author(s):  
Li Liu ◽  
She Tian ◽  
Zhu Li ◽  
Yongjun Gong ◽  
Hao Zhang

Abstract Background : Hepatocellular carcinoma (HCC) is one of the most common clinical malignant tumors, resulting in high mortality and poor prognosis. Studies have found that LncRNA plays an important role in the onset, metastasis and recurrence of hepatocellular carcinoma. The immune system plays a vital role in the development, progression, metastasis and recurrence of cancer. Therefore, immune-related lncRNA can be used as a novel biomarker to predict the prognosis of hepatocellular carcinoma. Methods : The transcriptome data and clinical data of HCC patients were obtained by using The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA‑LIHC), and immune-related genes were extracted from the Molecular Signatures Database (IMMUNE RESPONSE M19817 and IMMUNE SYSTEM PROCESS M13664). By constructing the co-expression network and Cox regression analysis, 13 immune-lncRNAs was identified to predict the prognosis of HCC patients. Patients were divided into high risk group and low risk group by using the risk score formula, and the difference in overall survival (OS) between the two groups was reflected by Kaplan-Meier survival curve. The time - dependent receiver operating characteristics (ROC) analysis and principal component analysis (PCA) were used to evaluate 13 immune -lncRNAs signature. Results : Through TCGA - LIHC extracted from 343 cases of patients with hepatocellular carcinoma RNA - Seq data and clinical data, 331 immune-related genes were extracted from the Molecular Signatures Database , co-expression networks and Cox regression analysis were constructed, 13 immune-lncRNAs signature was identified as biomarkers to predict the prognosis of patients. At the same time using the risk score median divided the patients into high risk and low risk groups, and through the Kaplan-Meier survival curve analysis found that high-risk group of patients' overall survival (OS) less low risk group of patients. The AUC value of the ROC curve is 0.828, and principal component analysis (PCA) results showed that patients could be clearly divided into two parts by immune-lncRNAs, which provided evidence for the use of 13 immune-lncRNAs signature as prognostic markers. Conclusion : Our study identified 13 immune-lncRNAs signature that can effectively predict the prognosis of HCC patients, which may be a new prognostic indicator for predicting clinical outcomes.


Sign in / Sign up

Export Citation Format

Share Document