scholarly journals Intra-individual Physiomic Landscape of Pyramidal Neurons in the Human Neocortex

2021 ◽  
Author(s):  
Henrike Planert ◽  
Franz Xaver Mittermaier ◽  
Sabine Grosser ◽  
Pawel Fidzinski ◽  
Ulf Christoph Schneider ◽  
...  

Computation within cortical microcircuits is determined by functional properties of the neurons and their synaptic interactions. While heterogeneity of inhibitory interneurons is well established, the anatomical, physiological, and molecular differentiation of excitatory pyramidal neurons is not fully resolved. To identify functional subtypes within the pyramidal neuron population, we focused on human layer 2-3 cortex which greatly expanded during evolution. We performed multi-neuron patch-clamp recordings in brain slices from the temporal cortex of 22 epilepsy patients. We characterized the electrophysiological properties of up to 80 pyramidal neurons per patient, enabling us to assess inter- and intra-individual functional variability. Hierarchical clustering of the high-dimensional parameter space yielded functionally distinct clusters of pyramidal neurons which were present across individuals. This may represent a generic organizational principle converging with previously described transcriptomic heterogeneity. We further observed substantial heterogeneity in physiological parameters with intra-individual variability being severalfold larger than inter-individual variability. The phenotypic variability within and across pyramidal neuron subtypes has important implications for the computational capacity of the cortical microcircuit. 

2015 ◽  
Vol 113 (7) ◽  
pp. 2014-2032 ◽  
Author(s):  
Dongxu Guan ◽  
William E. Armstrong ◽  
Robert C. Foehring

We studied neocortical pyramidal neurons from two lines of bacterial artificial chromosome mice ( etv1 and glt; Gene Expression Nervous System Atlas: GENSAT project), each of which expresses enhanced green fluorescent protein (EGFP) in a different subpopulation of layer 5 pyramidal neurons. In barrel cortex, etv1 and glt pyramidal cells were previously reported to differ in terms of their laminar distribution, morphology, thalamic inputs, cellular targets, and receptive field size. In this study, we measured the laminar distribution of etv1 and glt cells. On average, glt cells were located more deeply; however, the distributions of etv1 and glt cells extensively overlap in layer 5. To test whether these two cell types differed in electrophysiological properties that influence firing behavior, we prepared acute brain slices from 2–4-wk-old mice, where EGFP-positive cells in somatosensory cortex were identified under epifluorescence and then studied using whole cell current- or voltage-clamp recordings. We studied the details of action potential parameters and repetitive firing, characterized by the larger slow afterhyperpolarizations (AHPs) in etv1 neurons and larger medium AHPs (mAHPS) in glt cells, and compared currents underlying the mAHP and slow AHP (sAHP) in etv1 and glt neurons. Etv1 cells exhibited lower d V/d t for spike polarization and repolarization and reduced direct current (DC) gain (lower f- I slope) for repetitive firing than glt cells. Most importantly, we found that 1) differences in the expression of Ca2+-dependent K+ conductances (small-conductance calcium-activated potassium channels and sAHP channels) determine major functional differences between etv1 and glt cells, and 2) there is differential modulation of etv1 and glt neurons by norepinephrine.


2020 ◽  
Vol 7 (3) ◽  
Author(s):  
Ebrahim Behzad ◽  
Mojdeh Ghabaee ◽  
Mohammad Reza Bigdeli ◽  
Farshid Noorbakhsh ◽  
Ali Gorji ◽  
...  

Background: Spreading depolarization is associated with the extension of lesion size and complications in some important neurological diseases such as stroke, epilepsy, migraine, and traumatic brain injury. Objectives: This study aimed to reveal some molecular aspects of spreading depolarization and suggesting new therapeutic targets for its control by changing the function of different astrocytic and neuronal ion channels. Methods: The effects of nortriptyline on spreading depolarization in cortical and hippocampal tissues and on the electrophysiological properties of CA1 hippocampal pyramidal neurons were assessed by extra- and intracellular recording, following washing rat brain slices by the drug. Results: Nortriptyline made a significant increase in the amplitude of spreading depolarization in cortical and hippocampal tissues relative to control but did not change the duration significantly in each of the tissues. No significant difference was found in the effects of spreading depolarization on the electrophysiological properties of the CA1 pyramidal neurons between nortriptyline and control groups. Conclusions: The stimulating effect of nortriptyline on spreading depolarization is probably related to the augmentation of extracellular potassium collection in the cortex and hippocampus due to inhibition of astrocytic potassium scavenging function. This change can make more neurons prone to depolarization and increase the overall amplitude of spreading depolarization waves. Further studies should assess the effect of enhancing the clearance function of astrocyte-specific inwardly rectifying potassium channels, Kir4.1, or preventing other factors contributing to spreading depolarization on control of the process.


2021 ◽  
Author(s):  
Alexandre Guet-McCreight ◽  
Homeira Moradi Chameh ◽  
Sara Mahallati ◽  
Margaret Wishart ◽  
Shreejoy J Tripathy ◽  
...  

Aging involves various neurobiological changes, although their effect on brain function in humans remains poorly understood. The growing availability of human neuronal and circuit data provides opportunities for uncovering age-dependent changes of brain networks and for constraining models to predict consequences on brain activity. Here we found increased sag current in human layer 5 pyramidal neurons from older subjects, and captured this effect in biophysical models of younger and older pyramidal neurons. We used these models to simulate detailed layer 5 microcircuits and found lower baseline firing in older pyramidal neuron microcircuits, with minimal effect on response. We then validated the predicted reduced baseline firing using extracellular multi-electrode recordings from human brain slices of different ages. Our results thus report changes in human pyramidal neuron input integration properties that can sufficiently account for age-dependent decreases in cortical resting state activity and may underpin a clinical relevance in aging.


2016 ◽  
Vol 612 ◽  
pp. 80-86 ◽  
Author(s):  
Keming Ren ◽  
Lijuan Chen ◽  
Guoxia Sheng ◽  
Jiangping Wang ◽  
Xiaoming Jin ◽  
...  

2019 ◽  
Vol 131 (1) ◽  
pp. 94-104 ◽  
Author(s):  
Wenling Zhao ◽  
Mingyue Zhang ◽  
Jin Liu ◽  
Peng Liang ◽  
Rurong Wang ◽  
...  

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Volatile anesthetics inhibit presynaptic voltage-gated sodium channels to reduce neurotransmitter release, but their effects on excitatory neuron excitability by sodium current inhibition are unclear. The authors hypothesized that inhibition of transient and persistent neuronal sodium currents by the volatile anesthetic isoflurane contributes to reduced hippocampal pyramidal neuron excitability. Methods Whole-cell patch-clamp recordings of sodium currents of hippocampal cornu ammonis pyramidal neurons were performed in acute mouse brain slices. The actions of isoflurane on both transient and persistent sodium currents were analyzed at clinically relevant concentrations of isoflurane. Results The median inhibitory concentration of isoflurane for inhibition of transient sodium currents was 1.0 ± 0.3 mM (~3.7 minimum alveolar concentration [MAC]) from a physiologic holding potential of −70 mV. Currents from a hyperpolarized holding potential of −120 mV were minimally inhibited (median inhibitory concentration = 3.6 ± 0.7 mM, ~13.3 MAC). Isoflurane (0.55 mM; ~2 MAC) shifted the voltage-dependence of steady-state inactivation by −6.5 ± 1.0 mV (n = 11, P < 0.0001), but did not affect the voltage-dependence of activation. Isoflurane increased the time constant for sodium channel recovery from 7.5 ± 0.6 to 12.7 ± 1.3 ms (n = 13, P < 0.001). Isoflurane also reduced persistent sodium current density (median inhibitory concentration = 0.4 ± 0.1 mM, ~1.5 MAC) and resurgent currents. Isoflurane (0.55 mM; ~2 MAC) reduced action potential amplitude, and hyperpolarized resting membrane potential from −54.6 ± 2.3 to −58.7 ± 2.1 mV (n = 16, P = 0.001). Conclusions Isoflurane at clinically relevant concentrations inhibits both transient and persistent sodium currents in hippocampal cornu ammonis pyramidal neurons. These mechanisms may contribute to reductions in both hippocampal neuron excitability and synaptic neurotransmission.


2018 ◽  
Author(s):  
Brian E Kalmbach ◽  
Anatoly Buchin ◽  
Jeremy A Miller ◽  
Trygve E Bakken ◽  
Rebecca D Hodge ◽  
...  

SummaryGene expression studies suggest that differential ion channel expression contributes to differences in rodent versus human neuronal physiology. We tested whether h-channels more prominently contribute to the physiological properties of human compared to mouse supragranular pyramidal neurons. Single cell/nucleus RNA sequencing revealed ubiquitous HCN1-subunit expression in excitatory neurons in human, but not mouse supragranular layers. Using patch-clamp recordings, we found stronger h-channel-related membrane properties in supragranular pyramidal neurons in human temporal cortex, compared to mouse supragranular pyramidal neurons in temporal association area. The magnitude of these differences depended upon cortical depth and was largest in pyramidal neurons in deep L3. Additionally, pharmacologically blocking h-channels produced a larger change in membrane properties in human compared to mouse neurons. Finally, using biophysical modeling, we provided evidence that h-channels promote the transfer of theta frequencies from dendrite-to-soma in human L3 pyramidal neurons. Thus, h-channels contribute to between-species differences in a fundamental neuronal property.


2000 ◽  
Vol 83 (5) ◽  
pp. 2649-2660 ◽  
Author(s):  
C. Peter Bengtson ◽  
Peregrine B. Osborne

The ventral pallidum is a major source of output for ventral corticobasal ganglia circuits that function in translating motivationally relevant stimuli into adaptive behavioral responses. In this study, whole cell patch-clamp recordings were made from ventral pallidal neurons in brain slices from 6- to 18-day-old rats. Intracellular filling with biocytin was used to correlate the electrophysiological and morphological properties of cholinergic and noncholinergic neurons identified by choline acetyltransferase immunohistochemistry. Most cholinergic neurons had a large whole cell conductance and exhibited marked fast (i.e., anomalous) inward rectification. These cells typically did not fire spontaneously, had a hyperpolarized resting membrane potential, and also exhibited a prominent spike afterhyperpolarization (AHP) and strong spike accommodation. Noncholinergic neurons had a smaller whole cell conductance, and the majority of these cells exhibited marked time-dependent inward rectification that was due to an h-current. This current activated slowly over several hundred milliseconds at potentials more negative than −80 mV. Noncholinergic neurons fired tonically in regular or intermittent patterns, and two-thirds of the cells fired spontaneously. Depolarizing current injection in current clamp did not cause spike accommodation but markedly increased the firing frequency and in some cells also altered the pattern of firing. Spontaneous tetrodotoxin-sensitive GABAA-mediated inhibitory postsynaptic currents (IPSCs) were frequently recorded in noncholinergic neurons. These results show that cholinergic pallidal neurons have similar properties to magnocellular cholinergic neurons in other parts of the forebrain, except that they exhibit strong spike accommodation. Noncholinergic ventral pallidal neurons have large h-currents that could have a physiological role in determining the rate or pattern of firing of these cells.


2019 ◽  
Author(s):  
Rafael Olivares-Moreno ◽  
Mónica López-Hidalgo ◽  
Alain Altamirano-Espinoza ◽  
Adriana González-Gallardo ◽  
Anaid Antaramian ◽  
...  

Abstract Background: Movement performance depends on the synaptic interactions generated by coherent parallel sensorimotor cortical outputs to different downstream targets. The major outputs of the neocortex to subcortical structures are driven by pyramidal tract neurons (PTNs) located in layer 5B. One of the main targets of PTNs is the spinal cord through the corticospinal (CS) system, which is formed by a complex collection of distinct CS circuits. However, little is known about intracortical synaptic interactions that originate CS commands and how different populations of CS neurons are functionally organized. To further understand the functional organization of the CS system, we analyzed the activity of unambiguously identified CS neurons projecting to different zones of the same spinal cord segment using two-photon calcium imaging and retrograde neuronal tracers. Results: Sensorimotor cortex slices obtained from transgenic mice expressing GCaMP6 funder the Thy1 promoter were used to analyze the spontaneous calcium transients in layer 5 pyramidal neurons. Distinct subgroups of CS neurons projecting to dorsal horn and ventral areas of the same segment show more synchronous activity between them than with other subgroups. Conclusions: The results indicate that CS neurons projecting to different spinal cord zones segregated into functional ensembles depending on their hodology, suggesting that a modular organization of CS outputs controls sensorimotor behaviors in a coordinated manner.


2020 ◽  
Author(s):  
Luiza Filipis ◽  
Marco Canepari

ABSTRACTIn most neurons of the mammalian central nervous system, the action potential (AP) is triggered in the axon initial segment (AIS) by a fast Na+ current mediated by voltage-gated Na+ channels. The intracellular Na+ increase associated with the AP has been measured using fluorescent Na+ indicators, but with insufficient resolution to resolve the Na+ current in the AIS. In this article, we report the critical improvement in temporal resolution of the Na+ imaging technique allowing the direct experimental measurement of Na+ currents in the AIS. We determined the AIS Na+ current, from fluorescence measurements at temporal resolution of 100 µs and pixel resolution of half a micron, in pyramidal neurons of the layer-5 of the somatosensory cortex from brain slices of the mouse. We identified a subthreshold current before the AP, a fast inactivating current peaking during the rise of the AP and a persistent current during the AP repolarisation. We correlated the kinetics of the current at different distances from the soma with the kinetics of the somatic AP. We quantitatively compared the experimentally measured Na+ current with the current obtained by computer simulation of published NEURON models and we show how the present approach can lead to the correct estimate of the native behaviour of Na+ channels. Thus, it is expected that the present method will be adopted to investigate the function of different channel types under physiological or pathological conditions.


Sign in / Sign up

Export Citation Format

Share Document