scholarly journals Electrophysiological properties of genetically identified subtypes of layer 5 neocortical pyramidal neurons: Ca2+ dependence and differential modulation by norepinephrine

2015 ◽  
Vol 113 (7) ◽  
pp. 2014-2032 ◽  
Author(s):  
Dongxu Guan ◽  
William E. Armstrong ◽  
Robert C. Foehring

We studied neocortical pyramidal neurons from two lines of bacterial artificial chromosome mice ( etv1 and glt; Gene Expression Nervous System Atlas: GENSAT project), each of which expresses enhanced green fluorescent protein (EGFP) in a different subpopulation of layer 5 pyramidal neurons. In barrel cortex, etv1 and glt pyramidal cells were previously reported to differ in terms of their laminar distribution, morphology, thalamic inputs, cellular targets, and receptive field size. In this study, we measured the laminar distribution of etv1 and glt cells. On average, glt cells were located more deeply; however, the distributions of etv1 and glt cells extensively overlap in layer 5. To test whether these two cell types differed in electrophysiological properties that influence firing behavior, we prepared acute brain slices from 2–4-wk-old mice, where EGFP-positive cells in somatosensory cortex were identified under epifluorescence and then studied using whole cell current- or voltage-clamp recordings. We studied the details of action potential parameters and repetitive firing, characterized by the larger slow afterhyperpolarizations (AHPs) in etv1 neurons and larger medium AHPs (mAHPS) in glt cells, and compared currents underlying the mAHP and slow AHP (sAHP) in etv1 and glt neurons. Etv1 cells exhibited lower d V/d t for spike polarization and repolarization and reduced direct current (DC) gain (lower f- I slope) for repetitive firing than glt cells. Most importantly, we found that 1) differences in the expression of Ca2+-dependent K+ conductances (small-conductance calcium-activated potassium channels and sAHP channels) determine major functional differences between etv1 and glt cells, and 2) there is differential modulation of etv1 and glt neurons by norepinephrine.

1998 ◽  
Vol 80 (4) ◽  
pp. 1670-1677 ◽  
Author(s):  
Tony Defazio ◽  
John J. Hablitz

DeFazio, Tony and John J. Hablitz. Zinc and zolpidem modulate mIPSCs in rat neocortical pyramidal neurons. J. Neurophysiol. 80: 1670–1677, 1998. Pharmacological modulation of γ-aminobutyric acid-A (GABAA) receptors can provide important information on the types of subunits composing these receptors. In recombinant studies, zinc more potently inhibits αβ subunits compared with the αβγ combination, whereas modulation by nanomolar concentrations of the benzodiazepine type 1-selective agonist zolpidem is conferred by the α1βγ2 subunit combination. We examined four properties of miniature inhibitory postsynaptic currents (mIPSCs) from identified necortical pyramidal cells in rat brain slices: decay time constant, peak amplitude, rate of rise, and interevent interval. Exposure to 50 μM zinc reduced the decay time constant, peak amplitude, and rate of rise with no effect on interevent interval. Zolpidem enhanced mIPSCs in a concentration-dependent manner. Both 20 and 100 nM zolpidem increased the decay time constants of mIPSCs. In some cells, both peak amplitude and rate of rise were also enhanced. All cells treated with zinc were also responsive to zolpidem. These results show that neocortical pyramidal cells have a population of GABAA receptors sensitive to both zinc and zolpidem.


2020 ◽  
Vol 30 (8) ◽  
pp. 4689-4707
Author(s):  
Chelsea S Sullivan ◽  
Vishwa Mohan ◽  
Paul B Manis ◽  
Sheryl S Moy ◽  
Young Truong ◽  
...  

Abstract Parvalbumin (PV)-expressing basket interneurons in the prefrontal cortex (PFC) regulate pyramidal cell firing, synchrony, and network oscillations. Yet, it is unclear how their perisomatic inputs to pyramidal neurons are integrated into neural circuitry and adjusted postnatally. Neural cell adhesion molecule NCAM is expressed in a variety of cells in the PFC and cooperates with EphrinA/EphAs to regulate inhibitory synapse density. Here, analysis of a novel parvalbumin (PV)-Cre: NCAM F/F mouse mutant revealed that NCAM functions presynaptically in PV+ basket interneurons to regulate postnatal elimination of perisomatic synapses. Mutant mice exhibited an increased density of PV+ perisomatic puncta in PFC layer 2/3, while live imaging in mutant brain slices revealed fewer puncta that were dynamically eliminated. Furthermore, EphrinA5-induced growth cone collapse in PV+ interneurons in culture depended on NCAM expression. Electrophysiological recording from layer 2/3 pyramidal cells in mutant PFC slices showed a slower rise time of inhibitory synaptic currents. PV-Cre: NCAM F/F mice exhibited impairments in working memory and social behavior that may be impacted by altered PFC circuitry. These findings suggest that the density of perisomatic synapses of PV+ basket interneurons is regulated postnatally by NCAM, likely through EphrinA-dependent elimination, which is important for appropriate PFC network function and behavior.


1998 ◽  
Vol 79 (5) ◽  
pp. 2522-2534 ◽  
Author(s):  
Juan Carlos Pineda ◽  
Robert S. Waters ◽  
Robert C. Foehring

Pineda, Juan Carlos, Roberts S. Waters, and Robert C. Foehring. Specificity in the interaction of HVA Ca2+ channel types with Ca2+-dependent AHPs and firing behavior in neocortical pyramidal neurons. J. Neurophysiol. 79: 2522–2534, 1998. Intracellular recordings and organic and inorganic Ca2+ channel blockers were used in a neocortical brain slice preparation to test whether high-voltage–activated (HVA) Ca2+ channels are differentially coupled to Ca2+-dependent afterhyperpolarizations (AHPs) in sensorimotor neocortical pyramidal neurons. For the most part, spike repolarization was not Ca2+ dependent in these cells, although the final phase of repolarization (after the fast AHP) was sensitive to block of N-type current. Between 30 and 60% of the medium afterhyperpolarization (mAHP) and between ∼80 and 90% of the slow AHP (sAHP) were Ca2+ dependent. Based on the effects of specific organic Ca2+ channel blockers (dihydropyridines, ω-conotoxin GVIA, ω-agatoxin IVA, and ω-conotoxin MVIIC), the sAHP is coupled to N-, P-, and Q-type currents. P-type currents were coupled to the mAHP. L-type current was not involved in the generation of either AHP but (with other HVA currents) contributes to the inward currents that regulate interspike intervals during repetitive firing. These data suggest different functional consequences for modulation of Ca2+ current subtypes.


2004 ◽  
Vol 91 (1) ◽  
pp. 324-335 ◽  
Author(s):  
H. J. Abel ◽  
J.C.F. Lee ◽  
J. C. Callaway ◽  
R. C. Foehring

We examined the effects of recent discharge activity on [Ca2+]i in neocortical pyramidal cells. Our data confirm and extend the observation that there is a linear relationship between plateau [Ca2+]i and firing frequency in soma and proximal apical dendrites. The rise in [Ca2+] activates K+ channels underlying the afterhyperpolarization (AHP), which consists of 2 Ca2+-dependent components: the medium AHP (mAHP) and the slow AHP (sAHP). The mAHP is blocked by apamin, indicating involvement of SK-type Ca2+-dependent K+ channels. The identity of the apamin-insensitive sAHP channel is unknown. We compared the sAHP and the mAHP with regard to: 1) number and frequency of spikes versus AHP amplitude; 2) number and frequency of spikes versus [Ca2+]i; 3) IAHP versus [Ca2+]i. Our data suggest that sAHP channels require an elevation of [Ca2+]i in the cytoplasm, rather than at the membrane, consistent with a role for a cytoplasmic intermediate between Ca2+ and the K+ channels. The mAHP channels appear to respond to a restricted Ca2+ domain.


2003 ◽  
Vol 90 (2) ◽  
pp. 771-779 ◽  
Author(s):  
Chaelon I. O. Myme ◽  
Ken Sugino ◽  
Gina G. Turrigiano ◽  
Sacha B. Nelson

To better understand regulation of N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor complements across the cortex, and to investigate NMDA receptor (NMDAR)-based models of persistent activity, we compared NMDA/AMPA ratios in prefrontal (PFC) and visual cortex (VC) in rat. Whole cell voltage-clamp responses were recorded in brain slices from layer 2/3 pyramidal cells of the medial PFC and VC of rats aged p16–p21. Mixed miniature excitatory postsynaptic currents (mEPSCs) having AMPA receptor (AMPAR)- and NMDAR-mediated components were isolated in nominally 0 Mg2+ ACSF. Averaged mEPSCs were well-fit by double exponentials. No significant differences in the NMDA/AMPA ratio (PFC: 27 ± 1%; VC: 28 ± 3%), peak mEPSC amplitude (PFC: 19.1 ± 1 pA; VC: 17.5 ± 0.7 pA), NMDAR decay kinetics (PFC: 69 ± 8 ms; VC: 67 ± 6 ms), or degree of correlation between NMDAR- and AMPAR-mediated mEPSC components were found between the areas (PFC: n = 27; VC: n = 28). Recordings from older rats (p26–29) also showed no differences. EPSCs were evoked extracellularly in 2 mM Mg2+ at depolarized potentials; although the average NMDA/AMPA ratio was larger than that observed for mEPSCs, the ratio was similar in the two regions. In nominally 0 Mg2+ and in the presence of CNQX, spontaneous activation of NMDAR increased recording noise and produced a small tonic depolarization which was similar in both areas. We conclude that this basic property of excitatory transmission is conserved across PFC and VC synapses and is therefore unlikely to contribute to differences in firing patterns observed in vivo in the two regions.


1998 ◽  
Vol 79 (3) ◽  
pp. 1579-1582 ◽  
Author(s):  
Thomas Mittmann ◽  
Christian Alzheimer

Mittmann, Thomas and Christian Alzheimer. Muscarinic inhibition of persistent Na+ current in rat neocortical pyramidal neurons. J. Neurophysiol. 79: 1579–1582, 1998. Muscarinic modulation of persistent Na+ current ( I NaP) was studied using whole cell recordings from acutely isolated pyramidal cells of rat neocortex. After suppression of Ca2+ and K+ currents, I NaP was evoked by slow depolarizing voltage ramps or by long depolarizing voltage steps. The cholinergic agonist, carbachol, produced an atropine-sensitive decrease of I NaP at all potentials. When applied at a saturating concentration (20 μM), carbachol reduced peak I NaP by 38% on average. Carbachol did not alter the voltage dependence of I NaP activation nor did it interfere with the slow inactivation of I NaP. Our data indicate that I NaP can be targeted by the rich cholinergic innervation of the neocortex. Because I NaP is activated in the subthreshold voltage range, cholinergic inhibition of this current would be particularly suited to modulate the electrical behavior of neocortical pyramidal cells below and near firing threshold.


2006 ◽  
Vol 96 (6) ◽  
pp. 3194-3208 ◽  
Author(s):  
Yakov I. Verbny ◽  
Ferenc Erdélyi ◽  
Gábor Szabó ◽  
Matthew I. Banks

Feedforward inhibition triggered by thalamocortical (TC) afferents sharpens onset responses and shapes receptive fields of pyramidal cells in auditory cortex (ACx). Previous studies focused only on interneurons located in and around layer IV in primary ACx, target of the dense thalamic projections from ventral medial geniculate. We investigated a population of feedforward interneurons located throughout layers I–V and activated by both afferents from primary and nonprimary thalamus using recordings from auditory TC brain slices obtained from mice expressing green fluorescent protein under control of the glutamic acid decarboxylase (GAD65) promoter in a subpopulation of cortical GABAergic cells. We studied the responses of these interneurons and of pyramidal cells in ACx to thalamic stimulation and to hyper- and depolarizing current pulses. Most interneurons exhibited monosynaptic responses to thalamic stimulation, but this excitation was weak and subthreshold. Interneurons had multipolar dendritic morphology with widespread and dense axonal projections extending several hundred micrometers from the soma. In pyramidal cells from layers II–IV, thalamic excitatory postsynaptic potentials were significantly larger than in interneurons and were superthreshold in 40% of cells, but in these cells, there was no evidence of feedforward inhibition. By contrast, feedforward inhibition was observed in 12 of 18 layer V pyramidal cells. Thus feedforward inhibition in supragranular layers of ACx is weak, and these interneurons require coincident excitation to be activated by thalamic inputs.


1996 ◽  
Vol 76 (2) ◽  
pp. 651-667 ◽  
Author(s):  
F. M. Zhou ◽  
J. J. Hablitz

1. Whole cell patch-clamp techniques, combined with direct visualization of neurons, were used to study action potential (AP) and repetitive firing properties of layer I neurons in slices of rat neocortex. 2. Layer I neurons had resting membrane potentials (RMP) of -59.8 +/- 4.7 mV (mean +/- SD) and input resistances (RN) of 592 +/- 284 M Omega. Layer II/III pyramidal neurons had RMPs and RNs of -61.5 +/- 5.6 mV and 320 +/- 113 M omega, respectively. A double exponential function was needed to describe the charging curves of both neuron types. In layer I neurons, tau(0) was 45 +/- 22 ms and tau(1) was 5 +/- 3.3 ms whereas in layer II/III pyramidal neurons, tau(0) was 41 +/- 11 ms and tau(1) was 3 +/- 2.6 ms. Estimates of specific membrane resistance (Rm) for layer I and layer II/III cells were 45 +/- 22 and 41 +/- 11 k omega cm2, respectively (Cm was assumed to be 1 microF/cm2). 3. AP threshold was -41 +/- 2 mV in layer I neurons. Spike amplitudes, measured from threshold to peak, were 90.6 +/- 7.7 mV. AP durations, measured both at the base and half maximal amplitude, were 2.5 +/- 0.4 and 1.1 +/- 0.2 ms, respectively. AP 10-90% rise and repolarization times were 0.6 +/- 0.1 and 1.1 +/- 0.2 ms, respectively. In layer II/III pyramidal neurons, AP threshold was -41 +/- 2.5 mV and spike amplitude was 97 +/- 9.7 mV. AP duration at base and half maximal amplitude was 5.4 +/- 1.1 ms and 1.8 +/- 0.2 ms, respectively. AP 10-90% rise and decay times were 0.6 +/- 0.1 ms and 2.8 +/- 0.6 ms, respectively. 4. Layer I neurons were fast spiking cells that showed little frequency adaptation, a large fast afterhyperpolarization (fAHP), and no slow afterhyperpolarization (sAHP). Some cells had a medium afterhyperpolarization (mAHP) and a slow afterdepolarization (sADP). All pyramidal cells in layer II/III and "atypical" pyramidal neurons in upper layer II showed regular spiking behavior, prominent frequency adaptation, and marked sAHPs. 5. In both layer I neurons and layer II/III pyramidal neurons, changes in membrane potential did not greatly alter AP properties. The duration of APs evoked from -50 to -60 mV was only slightly longer, from -80 to -90 mV. The latency to first spike also was not solely dependent on membrane potential. 6. During repetitive firing, APs broadened in both layer I neurons and layer II/III pyramidal neurons. This was most prominent in pyramidal cells. Broadening was dependent on spike frequency and appeared to result from partial inactivation of both outward potassium and inward sodium currents. 7. In layer I neurons, removing Ca2+ from the bathing solution slightly prolonged spike duration and modestly increased AP firing frequency. These results indicate minimal involvement of Ca2+-dependent K+ currents in AP repolarization. fAHPs were reduced whereas sADPs were abolished. In layer II/III pyramidal neurons, removing Ca2+ reduced or blocked mAHPs and sAHPs and decreased or abolished frequency adaptation. 8. Low concentrations (50 microM) of 4-aminopyridine (4-AP) prolonged APs and induced burst-like firing in layer I neurons. In the presence of 4-AP, the spiking behavior of layer I neurons resembled that of regular spiking layer II/III pyramidal cells. At high concentrations (4 mM), 4-AP could induce a delayed depolarization (DD) after each spike in layer I neurons and in a minority of pyramidal neurons. 9. All layer I neurons had a prominent fAHP that was absent or very small in layer II/III pyramidal neurons. fAHP amplitude was inversely related to AP duration. The reduction of fAHPs by 4-AP or during repetitive firing was accompanied by AP prolongation, suggesting that the current underlying fAHP played an essential role in AP repolarization. The fAHP of layer I neurons could be effectively blocked by 4-AP but only slightly reduced by removing Ca2+ from bathing solution, indicating that the fAHP was mediated primarily by a voltage-dependent transient outward current.(ABSTRACT TRUNCATED)


2020 ◽  
Vol 78 (3) ◽  
pp. 951-964
Author(s):  
Marvin Ruiter ◽  
Lotte J. Herstel ◽  
Corette J. Wierenga

Background: In an early stage of Alzheimer’s disease (AD), before the formation of amyloid plaques, neuronal network hyperactivity has been reported in both patients and animal models. This suggests an underlying disturbance of the balance between excitation and inhibition. Several studies have highlighted the role of somatic inhibition in early AD, while less is known about dendritic inhibition. Objective: In this study we investigated how inhibitory synaptic currents are affected by elevated Aβ levels. Methods: We performed whole-cell patch clamp recordings of CA1 pyramidal neurons in organotypic hippocampal slice cultures after treatment with Aβ-oligomers and in hippocampal brain slices from AppNL-F-G mice (APP-KI). Results: We found a reduction of spontaneous inhibitory postsynaptic currents (sIPSCs) in CA1 pyramidal neurons in organotypic slices after 24 h Aβ treatment. sIPSCs with slow rise times were reduced, suggesting a specific loss of dendritic inhibitory inputs. As miniature IPSCs and synaptic density were unaffected, these results suggest a decrease in activity-dependent transmission after Aβ treatment. We observed a similar, although weaker, reduction in sIPSCs in CA1 pyramidal neurons from APP-KI mice compared to control. When separated by sex, the strongest reduction in sIPSC frequency was found in slices from male APP-KI mice. Consistent with hyperexcitability in pyramidal cells, dendritically targeting interneurons received slightly more excitatory input. GABAergic action potentials had faster kinetics in APP-KI slices. Conclusion: Our results show that Aβ affects dendritic inhibition via impaired action potential driven release, possibly due to altered kinetics of GABAergic action potentials. Reduced dendritic inhibition may contribute to neuronal hyperactivity in early AD.


2007 ◽  
Vol 97 (3) ◽  
pp. 1931-1940 ◽  
Author(s):  
D. Guan ◽  
J. C. F. Lee ◽  
M. H. Higgs ◽  
W. J. Spain ◽  
R. C. Foehring

Pyramidal neurons from layers II/III of somatosensory and motor cortex express multiple Kv1 α-subunits and a current sensitive to block by α-dendrotoxin (α-DTX). We examined functional roles of native Kv1 channels in these cells using current-clamp recordings in brain slices and current- and voltage-clamp recordings in dissociated cells. α-DTX caused a significant negative shift in voltage threshold for action potentials (APs) and reduced rheobase. Correspondingly, a ramp-voltage protocol revealed that the α-DTX–sensitive current activated at subthreshold voltages. AP width at threshold increased with successive APs during repetitive firing. The steady-state threshold width for a given firing rate was similar in control and α-DTX, despite an initially broader AP in α-DTX. AP voltage threshold increased similarly during a train of spikes under control conditions and in the presence of α-DTX. α-DTX had no effect on input resistance or resting membrane potential and modest effects on the amplitude or width of a single AP. Accordingly, experiments using AP waveforms (APWs) as voltage protocols revealed that α-DTX–sensitive current peaked late during the AP repolarization phase. Application of α-DTX increased the rate of firing to intracellular current injection and increased gain (multiplicative effects), but did not alter spike-frequency adaptation. Consistent with these findings, voltage-clamp experiments revealed that the proportion of outward current sensitive to α-DTX was highest during the interval between two APWs, reflecting slow deactivation kinetics at −50 mV. Finally, α-DTX did not alter the selectivity of pyramidal neurons for DC versus time-varying stimuli.


Sign in / Sign up

Export Citation Format

Share Document