scholarly journals Nucleolar-based Dux repression is essential for 2-cell stage exit

2021 ◽  
Author(s):  
Sheila Q Xie ◽  
Bryony J Leeke ◽  
Chad Whilding ◽  
Ryan T Wagner ◽  
Ferran Garcia-Llagostera ◽  
...  

Upon fertilisation, the mammalian embryo must switch from dependence on maternal transcripts to transcribing its own genome, and in mice involves the transient upregulation of MERVL transposons and MERVL-driven genes at the 2-cell stage. The mechanisms and requirement for MERVL and 2-cell (2C) gene upregulation are poorly understood. Moreover, this MERVL-driven transcriptional program must be rapidly shut off to allow 2-cell exit and developmental progression. Here, we report that robust ribosomal RNA (rRNA) synthesis and nucleolar maturation are essential for exit from the 2C state. 2C-like cells and 2-cell embryos show similar immature nucleoli with altered structure and reduced rRNA output. We reveal that nucleolar disruption via blocking Pol I activity or preventing nucleolar phase separation enhances conversion to a 2C-like state in embryonic stem cells (ESCs) by detachment of the MERVL activator Dux from the nucleolar surface. In embryos, nucleolar disruption prevents proper Dux silencing and leads to 2-4 cell arrest. Our findings reveal an intriguing link between rRNA synthesis, nucleolar maturation and gene repression during early development.

2021 ◽  
Author(s):  
Chuan Chen ◽  
Wenqiang Liu ◽  
Jiayin Guo ◽  
Yuanyuan Liu ◽  
Xuelian Liu ◽  
...  

AbstractN6-methyladenosine (m6A) on chromosome-associated regulatory RNAs (carRNAs), including repeat RNAs, play important roles in tuning the chromatin state and transcription1. Among diverse RNA-chromatin interacting modes, the nuclear RNA scaffold is considered important for trans-interactions2,3 but has not yet been connected with m6A yet. Here, we found that Ythdc1 played indispensable roles in the embryonic stem cell (ESC) self-renewal and differentiation potency, and these roles highly depended on its m6A-binding ability. Ythdc1 deficiency in ESCs resulted in decreased rRNA synthesis and the activation of 2-cell (2C) embryo-specific transcriptional program, and these observations recapitulated the transcriptome defects induced by dysfunction of the long interspersed nuclear element-1 (LINE1)-scaffold, which were unrelated to the direct targeting of Ythdc1. A detailed analysis revealed that Ythdc1 recognized m6A on LINE1 and was physically involved in the formation of the LINE1-Nucleolin partnership and the chromatin recruitment of Kap1. In summary, our study reveals a new link between m6A and the RNA scaffold and thus provides a new regulatory model for the crosstalk between RNA and the chromatin epigenome.


2008 ◽  
Vol 20 (1) ◽  
pp. 109
Author(s):  
O. Svarcova ◽  
A. Dinnyes ◽  
Z. Polgar ◽  
S. Bodo ◽  
M. Adorjan ◽  
...  

Major genome activation is a key event in early embryonic development occurring at the late 2-cell stage in the mouse. Concomitantly occurring molecular and ultrastructural changes in the nucleolus, where the ribosomal RNA genes are transcribed and their transcripts processed, enable the use of this organelle as a sensitive marker of genome activation in embryos produced by different techniques. The aim of this study was to evaluate and compare the genome activation in mouse embryos of different origin using the nucleolus as a marker. Early and late 2-cell- and late 4-cell-stage embryos, prepared by in vitro fertilization (IVF), parthenogenetic activation (PG), and somatic cell nuclear transfer of mouse embryonic fibroblast (MEF), and mouse HM1 embryonic stem cells (HM1) were processed for autoradiography following 3H-uridine incubation and transmission electron microscopy (5 embryos per group) and for immunofluorescence for detection of nucleolar proteins involved in rRNA synthesis (upstream binding factor; UBF) and processing (nucleophosmin; B23) (10–21 embryos per group). Early 2-cell embryos in all groups showed transcriptional activity in the nucleoplasm, but not over nucleolar precursor bodies (NPBs). UBF was localized diffusely in the cytoplasm. B23 was, likewise, localized in the cytoplasm and, in 30% of embryos, in the nucleoplasm. Late 2-cell IVF and PG embryos displayed transcriptional labelling over nucleoplasm and NPBs, which, ultrastructurally, were in the process of transformation into fibrillo-granular nucleoli presenting fibrillar centers, a dense fibrillar component, and a granular component. MEF and HM1 embryos displayed transcriptional labelling over nucleoplasm, but not over NPBs, and the transformation into functional nucleoli was never observed at this stage of development. UBF and B23 were in all groups localized in the nucleoplasm and, in 40–50% of cases, distinctly in the developing nucleoli. At the late 4-cell stage, all embryos presented transcriptional labelling over nucleoplasm and NPBs, which were at different levels of transformation into fibrillo-granular nucleoli. UBF and B23 were distinctly localized in these developing nucleoli. However, whereas fully transformed reticulated fibrillo-granular nucleoli without remnants of NPBs were found in IVF and PG embryos, despite the distinct localization of nucleolar proteins, the nucleoli in MEF and HM1 embryos were not reticulated and still displayed remnants of NPBs. Conclusively, embryos reconstructed by nuclear transfer, independent of cell origin, displayed well-timed extranucleolar genomic activation, but delayed transformation of NPBs into reticulated fibrillo-granular nucleoli. Moreover, the proper nucleolar activation noted in PG embryos activated in the same manner as MEF and HM1 embryos demonstrate that somatic and embryonic stem cell factors exert an influence on nucleolar activation and may cause reduced embryo viability. This work was supported by the Specific Targeted Project (MED-RAT; contract LSHG-CT-2006-518240) and Marie Curie ResearchTraining Networks (CLONET; contract 035468-2).


2018 ◽  
Author(s):  
Tommy Darrière ◽  
Michael Pilsl ◽  
Marie-Kerguelen Sarthou ◽  
Adrien Chauvier ◽  
Titouan Genty ◽  
...  

AbstractMost transcriptional activity of exponentially growing cells is carried out by the RNA Polymerase I (Pol I), which produces a ribosomal RNA (rRNA) precursor. In budding yeast, Pol I is a multimeric enzyme with 14 subunits. Among them, Rpa49 forms with Rpa34 a Pol I-specific heterodimer (homologous to PAF53/CAST heterodimer in human Pol I), which might be responsible for the specific functions of the Pol I. Previous studies provided insight in the involvement of Rpa49 in initiation, elongation, docking and releasing of Rrn3, an essential Pol I transcription factor. Here, we took advantage of the spontaneous occurrence of extragenic suppressors of the growth defect of the rpa49 null mutant to better understand the activity of Pol I. Combining genetic approaches, biochemical analysis of rRNA synthesis and investigation of the transcription rate at the individual gene scale, we characterized mutated residues of the Pol I as novel extragenic suppressors of the growth defect caused by the absence of Rpa49. When mapped on the Pol I structure, most of these mutations cluster within the jaw-lobe module, at an interface formed by the lobe in Rpa135 and the jaw made up of regions of Rpa190 and Rpa12. In vivo, the suppressor allele RPA135-F301S restores normal rRNA synthesis and increases Pol I density on rDNA genes when Rpa49 is absent. Growth of the Rpa135-F301S mutant is impaired when combined with exosome mutation rrp6Δ and it massively accumulates pre-rRNA. Moreover, Pol I bearing Rpa135-F301S is a hyper-active RNA polymerase in an in vitro tailed-template assay. We conclude that wild-type RNA polymerase I can be engineered to produce more rRNA in vivo and in vitro. We propose that the mutated area undergoes a conformational change that supports the DNA insertion into the cleft of the enzyme resulting in a super-active form of Pol I.Author summaryThe nuclear genome of eukaryotic cells is transcribed by three RNA polymerases. RNA polymerase I (Pol I) is a multimeric enzyme specialized in the synthesis of ribosomal RNA. Deregulation of the Pol I function is linked to the etiology of a broad range of human diseases. Understanding the Pol I activity and regulation represents therefore a major challenge. We chose the budding yeast Saccharomyces cerevisiae as a model, because Pol I transcription apparatus is genetically amenable in this organism. Analyses of phenotypic consequences of deletion/truncation of Pol I subunits-coding genes in yeast indeed provided insights into the activity and regulation of the enzyme. Here, we characterized mutations in Pol I that can alleviate the growth defect caused by the absence of Rpa49, one of the subunits composing this multi-protein enzyme. We mapped these mutations on the Pol I structure and found that they all cluster in a well-described structural element, the jaw-lobe module. Combining genetic and biochemical approaches, we showed that Pol I bearing one of these mutations in the Rpa135 subunit is able to produce more ribosomal RNA in vivo and in vitro. We propose that this super-activity is explained by structural rearrangement of the Pol I jaw/lobe interface.


2017 ◽  
Vol 474 (3) ◽  
pp. 377-384 ◽  
Author(s):  
Sianadh Dunn ◽  
Olivia Lombardi ◽  
Victoria H. Cowling

The mRNA cap is a structure added to RNA pol II transcripts in eukaryotes, which recruits factors involved in RNA processing, nuclear export and translation initiation. RNA guanine-7 methyltransferase (RNMT)–RNA-activating miniprotein (RAM), the mRNA cap methyltransferase complex, completes the basic functional mRNA cap structure, cap 0, by methylating the cap guanosine. Here, we report that RNMT–RAM co-ordinates mRNA processing with ribosome production. Suppression of RNMT–RAM reduces synthesis of the 45S ribosomal RNA (rRNA) precursor. RNMT–RAM is required for c-Myc expression, a major regulator of RNA pol I, which synthesises 45S rRNA. Constitutive expression of c-Myc restores rRNA synthesis when RNMT–RAM is suppressed, indicating that RNMT–RAM controls rRNA production predominantly by controlling c-Myc expression. We report that RNMT–RAM is recruited to the ribosomal DNA locus, which may contribute to rRNA synthesis in certain contexts.


2021 ◽  
Author(s):  
Karla Terrazas Falcon ◽  
Kristin Watt ◽  
Soma Dash ◽  
Annita Achilleos ◽  
Emma Moore ◽  
...  

Ribosomal RNA (rRNA) transcription by RNA Polymerase I (Pol I) is a critical rate-limiting step in ribosome biogenesis, which is essential for cell survival. Despite its global function, disruptions in ribosome biogenesis cause tissue-specific birth defects called ribosomopathies which frequently affect craniofacial development. Here, we present a cellular and molecular mechanism to explain the susceptibility of craniofacial development to disruptions in Pol I transcription. We show that Pol I subunits are highly expressed in the neuroepithelium and neural crest cells (NCC), which generate most of the craniofacial skeleton. High expression of Pol I subunits sustains elevated rRNA transcription in NCC progenitors, which supports their high tissue-specific levels of protein translation, but also makes NCC particulalry sensitive to rRNA synthesis defects. Underpinning these findings, NCC-specific deletion of Pol I subunits Polr1a, Polr1c, and associated factor Tcof1 in mice cell-autonomously diminishes rRNA synthesis, which causes an imbalance between rRNA and ribosomal proteins. This leads to increased ribosomal protein binding to Mdm2 and concomitantly diminished Mdm2 binding to p53. Consequently, p53 protein accumulates, resulting in NCC apoptosis and craniofacial anomalies. Furthermore, compound mutations in Pol I subunits and associated factors specifically exacerbates the craniofacial anomalies characteristic of the ribosomopathies Treacher Collins Syndrome and Acrofacial Dysostosis Cincinnati Type. Our novel results therefore demonstrate the dynamic spatiotemporal requirement for rRNA transcription during mammalian cranial NCC development and corresponding tissue-specific threshold sensitivities to disruptions in rRNA transcription in the pathogenesis of craniofacial congenital diseases.


2021 ◽  
pp. mbc.E21-05-0251
Author(s):  
Han Liao ◽  
Anushri Gaur ◽  
Claire Mauvais ◽  
Catherine Denicourt

Accumulating evidence indicate that increased ribosome biogenesis is a hallmark of cancer. It is well established that inhibition of any steps of ribosome biogenesis induces a nucleolar stress characterized by p53 activation and subsequent cell cycle arrest and/or cell death. However, cells derived from solid tumors have demonstrated different degree of sensitivity to ribosome biogenesis inhibition, where cytostatic effects rather than apoptosis are observed. The reason for this is not clear and the p53-specific transcriptional program induced after nucleolar stress has not been previously investigated. Here we demonstrate that blocking rRNA synthesis by depletion of essential rRNA processing factors such as LAS1L, PELP1, and NOP2 or by inhibition of RNA Pol I with the specific small molecule inhibitor CX-5461, mainly induce cell cycle arrest accompanied with autophagy in solid tumor-derived cell lines. Using gene expression analysis, we find that p53 orchestrates a transcriptional program involved in promoting metabolic remodeling and autophagy to help cells survive under nucleolar stress. Importantly, our study demonstrates that blocking autophagy significantly sensitizes cancer cells to RNA Pol I inhibition by CX-5461, suggesting that interfering with autophagy should be considered a strategy to heighten the responsiveness of ribosome biogenesis-targeted therapies in p53-positive tumors.


2005 ◽  
Vol 17 (2) ◽  
pp. 256
Author(s):  
B. Bjerregaard ◽  
F. Strejcek ◽  
Z. Rasmussen ◽  
J. Laurincik ◽  
H. Niemann ◽  
...  

In vitro production (IVP) of porcine embryos by in vitro maturation of oocytes followed by fertilization and culture in vitro is hampered by great deficiencies. Initiation of at least the major embryonic genome transcription, which includes activation of ribosomal RNA (rRNA) genes and the associated formation of a fibrillo-granular nuclealus, is normally seen during the 4-cell stage in pigs. We have investigated the activation of rRNA synthesis and the presence of silver staining nucleolar proteins in porcine IVP embryos as a marker of transcriptional activity and, thus, developmental competence. A total of 205 porcine IVP embryos from the 2-cell to the blastocyst stage were examined using sequential fluorescent in situ hybridization (FISH) to the rRNA genes and their transcripts and silver staining of nucleolar proteins as previously described (Viuff et al. 2002 Biol. Reprod. 66, 629–634). Briefly, cumulus-oocyte complexes with at least three cumulus cell layers and evenly granulated ooplasm were isolated from 2–5 mm ovarian follicles with stereomicroscopic evaluation. Subsequently, oocytes were matured in NCSU-37 and mechanically denuded followed by fertilization using frozen-thawed epididymal semen. Presumptive zygotes were then cultured in NCSU-23 at 39°C, 5% CO2. Around the time of expected cleavage, the embryos were examined every second hour to determine the time of cleavage. Embryos at the 2-cell stage were harvested at 5 h post-cleavage (hpc), 4-cell embryos late during the third cell cycle at 30 hpc, and tentative 8- and 16-cell embryos at 10 hpc. Blastocysts were harvested at Day 5 post-insemination. In general, nuclei of 2-cell embryos displayed 4 small foci of FITC labelling (presumably the rDNA), but no specific silver staining, and were consequently categorized as transcriptionally inactive. At the late 4-cell stage, 58% of the embryos resembled the 2-cell stage. However, in the remaining embryos (42%), some or all nuclei displayed large areas of FISH labelling (presumptive rDNA and rRNA) co-localized with silver staining, and were catagorized as transcriptionally active. Among the 8-cell embryos, 64% displayed a majority of transcriptionally active nuclei, whereas this was the case in 83% and 92% of the embryos in the 16-cell embryos and the blastocysts, respectively. In general, the majority of the embryos contained a mixture of transcriptionally active and inactive cells. These findings show that the porcine IVP embryos are often delayed and asynchronous with respect to activation of the rRNA genes. Table 1. Categorization of nuclei according to transcriptional activity This work was supported by grants from “Disease models, disease prevention and animal welfare improvement: The pig embryo as a model.” Danish Research Agency (Grant: 9901178), NATO (Grant: 978658), and Deutsche Forschungsgemeinschaft (DFG).


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1412
Author(s):  
William J. Andrews ◽  
Swagat Ray ◽  
Tatiana Panova ◽  
Christoph Engel ◽  
Konstantin I. Panov

In eukaryotes, ribosome biogenesis is driven by the synthesis of the ribosomal RNA (rRNA) by RNA polymerase I (Pol-I) and is tightly linked to cell growth and proliferation. The 3D-structure of the rDNA promoter plays an important, yet not fully understood role in regulating rRNA synthesis. We hypothesized that DNA intercalators/groove binders could affect this structure and disrupt rRNA transcription. To test this hypothesis, we investigated the effect of a number of compounds on Pol-I transcription in vitro and in cells. We find that intercalators/groove binders are potent inhibitors of Pol-I specific transcription both in vitro and in cells, regardless of their specificity and the strength of its interaction with DNA. Importantly, the synthetic ability of Pol-I is unaffected, suggesting that these compounds are not targeting post-initiating events. Notably, the tested compounds have limited effect on transcription by Pol-II and III, demonstrating the hypersensitivity of Pol-I transcription. We propose that stability of pre-initiation complex and initiation are affected as result of altered 3D architecture of the rDNA promoter, which is well in line with the recently reported importance of biophysical rDNA promoter properties on initiation complex formation in the yeast system.


Author(s):  
Sarah C. Kammerud ◽  
Brandon J. Metge ◽  
Amr R. Elhamamsy ◽  
Shannon E. Weeks ◽  
Heba A. Alsheikh ◽  
...  

AbstractThe nucleolus of a cell is a critical cellular compartment that is responsible for ribosome biogenesis and plays a central role in tumor progression. Fisetin, a nutraceutical, is a naturally occurring flavonol from the flavonoid group of polyphenols that has anti-cancer effects. Fisetin negatively impacts several signaling pathways that support tumor progression. However, effect of fisetin on the nucleolus and its functions were unknown. We observed that fisetin is able to physically enter the nucleolus. In the nucleolus, RNA polymerase I (RNA Pol I) mediates the biogenesis of ribosomal RNA. Thus, we investigated the impacts of fisetin on the nucleolus. We observed that breast tumor cells treated with fisetin show a 20–30% decreased nucleolar abundance per cell and a 30–60% downregulation of RNA Pol I transcription activity, as well as a 50–70% reduction in nascent rRNA synthesis, depending on the cell line. Our studies show that fisetin negatively influences MAPK/ERK pathway to impair RNA Pol I activity and rRNA biogenesis. Functionally, we demonstrate that fisetin acts synergistically (CI = 0.4) with RNA Pol I inhibitor, BMH-21 and shows a noteworthy negative impact (60% decrease) on lung colonization of breast cancer cells. Overall, our findings highlight the potential of ribosomal RNA (rRNA) biogenesis as a target for secondary prevention and possible treatment of metastatic disease.


2021 ◽  
Author(s):  
Chuan Chen ◽  
Wenqiang Liu ◽  
Jiayin Guo ◽  
Yuanyuan Liu ◽  
Xuelian Liu ◽  
...  

AbstractN6-methyladenosine (m6A) on chromosome-associated regulatory RNAs (carRNAs), including repeat RNAs, plays important roles in tuning the chromatin state and transcription, but the intrinsic mechanism remains unclear. Here, we report that YTHDC1 plays indispensable roles in the self-renewal and differentiation potency of mouse embryonic stem cells (ESCs), which highly depends on the m6A-binding ability. Ythdc1 is required for sufficient rRNA synthesis and repression of the 2-cell (2C) transcriptional program in ESCs, which recapitulates the transcriptome regulation by the LINE1 scaffold. Detailed analyses revealed that YTHDC1 recognizes m6A on LINE1 RNAs in the nucleus and regulates the formation of the LINE1-NCL partnership and the chromatin recruitment of KAP1. Moreover, the establishment of H3K9me3 on 2C-related retrotransposons is interrupted in Ythdc1-depleted ESCs and inner cell mass (ICM) cells, which consequently increases the transcriptional activities. Our study reveals a role of m6A in regulating the RNA scaffold, providing a new model for the RNA-chromatin cross-talk.


Sign in / Sign up

Export Citation Format

Share Document