scholarly journals Longitudinal SARS-CoV-2 RNA Wastewater Monitoring Across a Range of Scales Correlates with Total and Regional COVID-19 Burden in a Well-Defined Urban Population

Author(s):  
Nicole Acosta ◽  
Maria Bautista ◽  
Barbara J Waddell ◽  
Janine McCalder ◽  
Alex Buchner Beaudet ◽  
...  

Wastewater-based epidemiology (WBE) is an emerging surveillance tool that has been used to monitor the ongoing COVID-19 pandemic by tracking SARS-CoV-2 RNA shed into wastewater. WBE was performed to monitor the occurrence and spread of SARS-CoV-2 from three wastewater treatment plants (WWTP) and six neighborhoods in the city of Calgary, Canada (population 1.3 million). A total of 222 WWTP and 192 neighborhood samples were collected from June 2020 to May 2021, encompassing the end of the first-wave (June 2020), the second-wave (November end to December, 2020) and the third-wave of the COVID-19 pandemic (mid-April to May, 2021). Flow-weighted 24-hour composite samples were processed to extract RNA that was then analyzed for two SARS-CoV-2-specific regions of the nucleocapsid gene, N1 and N2, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Using this approach SARS-CoV-2 RNA was detected in 98.06 percent (406/414) of wastewater samples. SARS-CoV-2 RNA abundance was compared to clinically diagnosed COVID-19 cases organized by the three-digit postal code of affected individuals primary residences, enabling correlation analysis at neighborhood, WWTP and city-wide scales. Strong correlations were observed between N1 and N2 gene signals in wastewater and new daily cases for WWTPs and neighborhoods. Similarly, when flow rates at Calgarys three WWTPs were used to normalize observed concentrations of SARS-CoV-2 RNA and combine them into a city-wide signal, this was strongly correlated with regionally diagnosed COVID-19 cases and clinical test percent positivity rate. Linked census data demonstrated disproportionate SARS-CoV-2 in wastewater from areas of the city with lower socioeconomic status and more racialized communities. WBE across a range of urban scales was demonstrated to be an effective mechanism of COVID-19 surveillance.

Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 798
Author(s):  
Samendra P. Sherchan ◽  
Shalina Shahin ◽  
Jeenal Patel ◽  
Lauren M. Ward ◽  
Sarmila Tandukar ◽  
...  

In this study, we investigated the occurrence of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) RNA in primary influent (n = 42), secondary effluent (n = 24) and tertiary treated effluent (n = 34) collected from six wastewater treatment plants (WWTPs A–F) in Virginia (WWTP A), Florida (WWTPs B, C, and D), and Georgia (WWTPs E and F) in the United States during April–July 2020. Of the 100 wastewater samples analyzed, eight (19%) untreated wastewater samples collected from the primary influents contained SARS-CoV-2 RNA as measured by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assays. SARS-CoV-2 RNA were detected in influent wastewater samples collected from WWTP A (Virginia), WWTPs E and F (Georgia) and WWTP D (Florida). Secondary and tertiary effluent samples were not positive for SARS-CoV-2 RNA indicating the treatment processes in these WWTPs potentially removed SARS-CoV-2 RNA during the secondary and tertiary treatment processes. However, further studies are needed to understand the log removal values (LRVs) and transmission risks of SARS-CoV-2 RNA through analyzing wastewater samples from a wider range of WWTPs.


2021 ◽  
Author(s):  
Linda Lara-Jacobo ◽  
Golam Islam ◽  
Jean-Paul Desaulniers ◽  
Andrea Kirkwood ◽  
Denina Simmons

Abstract On March 12, 2020, the World Health Organization (WHO) declared COVID-19 as a global pandemic. COVID-19 is produced by a novel β-coronavirus known as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [1]. Several studies have detected SARS-CoV-2 RNA in urine, feces, and other biofluids from both symptomatic and asymptomatic people with COVID-19 [2], suggesting that SARS-CoV-2 RNA could be detected in human wastewater [3]. Thus, wastewater-based epidemiology (WBE) is now used as an approach to monitor COVID-19 prevalence in many different places around the world [4-10] . Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is the most common SARS-CoV-2 detection method in WBE, but there are other methods for viral biomolecule detection that could work as well. The aim of this study was to evaluate the presence of SARS-CoV-2 proteins in untreated wastewater (WW) influents collected from six wastewater treatment plants (WWTPs), from Durham Region, Ontario, Canada, using a LC-MS/MS-based proteomics approach. We identified many SARS-CoV-2 proteins in these wastewater samples, with peptides from pp1ab being the most consistently detected and with consistent abundance.


2020 ◽  
Author(s):  
Yanghui Deng ◽  
Changsheng Guo ◽  
Heng Zhang ◽  
Xingxing Yin ◽  
Like Chen ◽  
...  

Abstract Background: As a class of contaminants of emerging concern (CECs), illicit drugs should be taken into account in the water management because of their social and public health risks. Wastewater treatment plants (WWTPs) are usually considered as the source and sink of contaminants, and drug residues are observed in their effluents due to the inefficient removal of CECs. In this study, wastewater samples were collected from eight WWTPs in Changzhou City for assessment of the abuse of 12 illicit drugs in the city by wastewater-based epidemiology (WBE) method. Results: Drug concentrations ranged from


2021 ◽  
Author(s):  
Linda Lara-Jacobo ◽  
Golam Islam ◽  
Jean-Paul Desaulniers ◽  
Andrea Kirkwood ◽  
Denina Simmons

Abstract On March 12, 2020, the World Health Organization (WHO) declared COVID-19 as a global pandemic. COVID-19 is produced by a novel β-coronavirus known as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [1]. Several studies have detected SARS-CoV-2 RNA in urine, feces, and other biofluids from both symptomatic and asymptomatic people with COVID-19 [2], suggesting that SARS-CoV-2 RNA could be detected in human wastewater [3]. Thus, wastewater-based epidemiology (WBE) is now used as an approach to monitor COVID-19 prevalence in many different places around the world [4-10] . Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is the most common SARS-CoV-2 detection method in WBE, but there are other methods for viral biomolecule detection that could work as well. The aim of this study was to evaluate the presence of SARS-CoV-2 proteins in untreated wastewater (WW) influents collected from six wastewater treatment plants (WWTPs), from Durham Region, Ontario, Canada, using a LC-MS/MS-based proteomics approach. We identified many SARS-CoV-2 proteins in these wastewater samples, with peptides from pp1ab being the most consistently detected and with consistent abundance.


2021 ◽  
Author(s):  
Linda Lara-Jacobo ◽  
Golam Islam ◽  
Jean-Paul Desaulniers ◽  
Andrea Kirkwood ◽  
Denina Simmons

Abstract On March 12, 2020, the World Health Organization (WHO) declared COVID-19 as a global pandemic. COVID-19 is produced by a novel β-coronavirus known as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [1]. Several studies have detected SARS-CoV-2 RNA in urine, feces, and other biofluids from both symptomatic and asymptomatic people with COVID-19 [2], suggesting that SARS-CoV-2 RNA could be detected in human wastewater [3]. Thus, wastewater-based epidemiology (WBE) is now used as an approach to monitor COVID-19 prevalence in many different places around the world [4-10]. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is the most common SARS-CoV-2 detection method in WBE, but there are other methods for viral biomolecule detection that could work as well. The aim of this study was to evaluate the presence of SARS-CoV-2 proteins in untreated wastewater (WW) influents collected from six wastewater treatment plants (WWTPs), from Durham Region, Ontario, Canada, using a LC-MS/MS-based proteomics approach. We identified many SARS-CoV-2 proteins in these wastewater samples, with peptides from pp1ab being the most consistently detected and with consistent abundance.


2019 ◽  
Author(s):  
Yanghui Deng ◽  
Changsheng Guo ◽  
Heng Zhang ◽  
Xingxing Yin ◽  
Like Chen ◽  
...  

Abstract BackgroundAs a class of contaminants of emerging concern (CECs), illicit drugs should be taken into account in the water management because of their social and public health risks. Wastewater treatment plants (WWTPs) are usually considered as the source and sink of contaminants, and drug residues are observed in their effluents due to the inefficient removal of CECs. In this study, wastewater samples were collected from eight WWTPs in Changzhou City for assessment of the abuse of 12 illicit drugs in the city by Wastewater-based epidemiology (WBE) method.ResultsDrug concentrations ranged from <LOD-51.62 ng/L and <LOD-22.44 ng/L in influent and effluent samples, respectively. The highest removal rate of drugs was 79.0% in the WWTP which used sequencing batch reactor activated sludge (SBR) process method, while the lowest was found in the WWTP using anoxic oxic (A/O) process (47.0%), indicating that the drug removal rates were closely related to the treatment techniques. WBE method was applied to estimate the population normalized illicit drugs consumption. It demonstrated that methamphetamine (METH) was the most abused drug in Changzhou City, ranging from 0.16-20.65 mg/d/1000 inh, while other target drugs ranged from <LOD-1.52 mg/d/1000 inh. Consumption of cocaine (COC) and ecstasy was very low among the samples. ConclusionOverall, this research suggests that the SBR process is the best for removing illicit drugs. WBE can be readily to monitor the abuse of drugs in those regions, compared with traditional monitoring models. Much attention should be paid by regulatory and management communities to METH and KET abuse in Changzhou City.


2020 ◽  
Author(s):  
Sudipti Arora ◽  
Aditi Nag ◽  
Ankur Rajpal ◽  
Satya Brat Tiwari ◽  
Jasmine Sethi ◽  
...  

We investigated the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) RNA at different treatment stages of 15 wastewater treatment plants (WWTPs) in two North Indian states of Rajasthan and Uttarakhand. Untreated (influent), biologically treated, and disinfected wastewater samples were collected from May to August 2020. The qualitative analysis of the wastewater for the presence of SARS-CoV-2 RNA was done using different pre-processing methods. SARS-CoV-2 RNA was detected in 11 out of 39 wastewater samples in Jaipur district and 5 out of 17 wastewater samples in Haridwar District using Reverse-Transcriptase Quantitative Polymerase Chain Reaction (RT-qPCR) for qualitative detection. None of the 56 samples tested for post-secondary or tertiary treatment were found positive for SARS-CoV-2 RNA. The findings indicate that there are no SARS-CoV-2 related risks involved with using the treated effluent for non-potable applications. In contrast, untreated wastewater may be a potential route of viral transmission to the WWTP and sanitation workers. Future studies are imperative to understand the survival rates of these viruses in wastewater.


2020 ◽  
Vol 12 (2) ◽  
pp. 296-306
Author(s):  
Anita Ptiček Siročić ◽  
Ivana Mlinarić ◽  
Dragana Dogančić ◽  
Nikola Sakač ◽  
Sanja Horvat

Basedon the concept of sustainable development, water must be stored and protected for present and future generations. This also means saving the water through wastewater treatment. The primary role of the wastewater treatment plants is to treat wastewaters upto a satisfactory level of quality as close as possible to the natural state. The central wastewater treatment plant (WWTP) of the City of Koprivnica treats wastewater including the tertiary wastewater. Due to considerable fluctuations in wastewater volumes and loads, sequential batch reactor (SBR) technology was selected as the best solution for wastewater treatment. The final stage of treatment at the WWTP of the City of Koprivnica is the process of sludge treatment by aerobic stabilization, dehydration and MID-MIX technology, which produces a chemicallyinert powder –solidificate. Solidificate can be used in civil engineering or it can be disposed tolandfill without environmental impact. This paper analyses the physical-chemical indicators of wastewater quality (chemical oxygen demand -COD, biological oxygen demand -BOD5, total nitrogen, total phosphorus, suspended matter) on wastewater samples from the WWTP of the City of Koprivnica in a period from 2014 to 2016. The results indicate that the treatedwastewater has a satisfactory quality and that the WWTP of the City of Koprivnica works efficiently.


2021 ◽  
Author(s):  
Linda Lara-Jacobo ◽  
Golam Islam ◽  
Jean-Paul Desaulniers ◽  
Andrea Kirkwood ◽  
Denina Simmons

Abstract On March 12, 2020, the World Health Organization (WHO) declared COVID-19 as a global pandemic. COVID-19 is produced by a novel β-coronavirus known as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [1]. Several studies have detected SARS-CoV-2 RNA in urine, feces, and other biofluids from both symptomatic and asymptomatic people with COVID-19 [2], suggesting that SARS-CoV-2 RNA could be detected in human wastewater [3]. Thus, wastewater-based epidemiology (WBE) is now used as an approach to monitor COVID-19 prevalence in many different places around the world [4-10]. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is the most common SARS-CoV-2 detection method in WBE, but there are other methods for viral biomolecule detection that could work as well. The aim of this study was to evaluate the presence of SARS-CoV-2 proteins in untreated wastewater (WW) influents collected from six wastewater treatment plants (WWTPs), from Durham Region, Ontario, Canada, using a LC-MS/MS-based proteomics approach. We identified many SARS-CoV-2 proteins in these wastewater samples, with peptides from pp1ab being the most consistently detected and with consistent abundance.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 210
Author(s):  
Tang Liu ◽  
Shufeng Liu ◽  
Shishi He ◽  
Zhichao Tian ◽  
Maosheng Zheng

To explore the main behavior and mechanism of minimizing nitrous oxide (N2O) emission through intermittent aeration during wastewater treatment, two lab-scale sequencing batch reactors operated at intermittently aerated mode (SBR1), and continuously aerated mode (SBR2) were established. Compared with SBR2, the intermittently aerated SBR1 reached not only a higher total nitrogen removal efficiency (averaged 93.5%) but also a lower N2O-emission factor (0.01–0.53% of influent ammonia), in which short-cut nitrification and denitrification were promoted. Moreover, less accumulation and consumption of polyhydroxyalkanoates, a potential endogenous carbon source promoting N2O emission, were observed in SBR1. Batch experiments revealed that nitrifier denitrification was the major pathway generating N2O while heterotrophic denitrification played as a sink of N2O, and SBR1 embraced a larger N2O-mitigating capability. Finally, quantitative polymerase chain reaction results suggested that the abundant complete ammonia oxidizer (comammox) elevated in the intermittently aerated environment played a potential role in avoiding N2O generation during wastewater treatment. This work provides an in-depth insight into the utilization of proper management of intermittent aeration to control N2O emission from wastewater treatment plants.


Sign in / Sign up

Export Citation Format

Share Document