scholarly journals Modulation of PKM1/2 levels by steric blocking morpholinos alters the metabolic and pluripotent state of murine pluripotent stem cells

2021 ◽  
Author(s):  
Joshua G. Dierolf ◽  
Hailey L.M. Hunter ◽  
Andrew J. Watson ◽  
Dean H Betts

Cellular metabolism plays both an active and passive role in embryonic development, pluripotency, and cell-fate decisions. However, little is known regarding the role of metabolism in regulating the recently described formative pluripotent state. The pluripotent developmental continuum features a metabolic switch from a bivalent metabolism (both glycolysis and oxidative phosphorylation) in naive cells, to predominantly glycolysis in primed cells. We investigated the role of pyruvate kinase muscle isoforms (PKM1/2) in naive, formative, and primed mouse embryonic stem cells through modulation of PKM1/2 mRNA transcripts using steric blocking morpholinos that downregulate PKM2 and upregulate PKM1. We have examined these effects in naive, formative, and primed cells by quantifying the effects of PKM1/2 modulation on pluripotent and metabolic transcripts and by measuring shifts in the population frequencies of cells expressing naive and primed cell surface markers by flow cytometry. Our results demonstrate that modulating PKM1 and PKM2 levels alters the transition from the naive state into a primed pluripotent state by enhancing the proportion of the affected cells seen in the formative state. Therefore, we conclude that PKM1/2 actively contributes to mechanisms that oversee early stem pluripotency and their progression towards a primed pluripotent state.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Weiwei Sun ◽  
Bin Zhang ◽  
Qingli Bie ◽  
Na Ma ◽  
Na Liu ◽  
...  

The biological role of RNA methylation in stem cells has attracted increasing attention. Recent studies have demonstrated that RNA methylation plays a crucial role in self-renewal, differentiation, and tumorigenicity of stem cells. In this review, we focus on the biological role of RNA methylation modifications including N6-methyladenosine, 5-methylcytosine, and uridylation in embryonic stem cells, adult stem cells, induced pluripotent stem cells, and cancer stem cells, so as to provide new insights into the potential innovative treatments of cancer or other complex diseases.


2017 ◽  
Author(s):  
Andrea Corsinotti ◽  
Frederick C. K. Wong ◽  
Tülin Tatar ◽  
Iwona Szczerbinska ◽  
Florian Halbritter ◽  
...  

AbstractDeletion of Sox2 from embryonic stem cells (ESCs) causes trophectodermal differentiation. While this can be prevented by enforced expression of the related SOXB1 proteins, SOX1 or SOX3, the roles of SOXB1 proteins in epiblast stem cell (EpiSC) pluripotency are unknown. Here we show that Sox2 can be deleted from EpiSCs with impunity. This is due to a shift in the balance of SoxB1 expression in EpiSCs, which have decreased Sox2 and increased Sox3 compared to ESCs. Consistent with functional redundancy, Sox3 can also be deleted from EpiSCs without eliminating self-renewal. However, deletion of both Sox2 and Sox3 prevents self-renewal. The overall SOXB1 levels in ESCs affect differentiation choices: neural differentiation of Sox2 heterozygous ESCs is compromised, while increased SOXB1 levels divert the ESC to EpiSC transition towards neural differentiation. Therefore, optimal SOXB1 levels are critical for each pluripotent state and for cell fate decisions during exit from naïve pluripotency.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Andrea Corsinotti ◽  
Frederick CK Wong ◽  
Tülin Tatar ◽  
Iwona Szczerbinska ◽  
Florian Halbritter ◽  
...  

Deletion of Sox2 from mouse embryonic stem cells (ESCs) causes trophectodermal differentiation. While this can be prevented by enforced expression of the related SOXB1 proteins, SOX1 or SOX3, the roles of SOXB1 proteins in epiblast stem cell (EpiSC) pluripotency are unknown. Here, we show that Sox2 can be deleted from EpiSCs with impunity. This is due to a shift in the balance of SoxB1 expression in EpiSCs, which have decreased Sox2 and increased Sox3 compared to ESCs. Consistent with functional redundancy, Sox3 can also be deleted from EpiSCs without eliminating self-renewal. However, deletion of both Sox2 and Sox3 prevents self-renewal. The overall SOXB1 levels in ESCs affect differentiation choices: neural differentiation of Sox2 heterozygous ESCs is compromised, while increased SOXB1 levels divert the ESC to EpiSC transition towards neural differentiation. Therefore, optimal SOXB1 levels are critical for each pluripotent state and for cell fate decisions during exit from naïve pluripotency.


PLoS Biology ◽  
2009 ◽  
Vol 7 (7) ◽  
pp. e1000149 ◽  
Author(s):  
Tibor Kalmar ◽  
Chea Lim ◽  
Penelope Hayward ◽  
Silvia Muñoz-Descalzo ◽  
Jennifer Nichols ◽  
...  

Science ◽  
2013 ◽  
Vol 341 (6146) ◽  
pp. 651-654 ◽  
Author(s):  
Pingping Hou ◽  
Yanqin Li ◽  
Xu Zhang ◽  
Chun Liu ◽  
Jingyang Guan ◽  
...  

Pluripotent stem cells can be induced from somatic cells, providing an unlimited cell resource, with potential for studying disease and use in regenerative medicine. However, genetic manipulation and technically challenging strategies such as nuclear transfer used in reprogramming limit their clinical applications. Here, we show that pluripotent stem cells can be generated from mouse somatic cells at a frequency up to 0.2% using a combination of seven small-molecule compounds. The chemically induced pluripotent stem cells resemble embryonic stem cells in terms of their gene expression profiles, epigenetic status, and potential for differentiation and germline transmission. By using small molecules, exogenous “master genes” are dispensable for cell fate reprogramming. This chemical reprogramming strategy has potential use in generating functional desirable cell types for clinical applications.


2021 ◽  
Author(s):  
Candice Byers ◽  
Catrina Spruce ◽  
Haley J. Fortin ◽  
Anne Czechanski ◽  
Steven C. Munger ◽  
...  

AbstractGenetically diverse pluripotent stem cells (PSCs) display varied, heritable responses to differentiation cues in the culture environment. By harnessing these disparities through derivation of embryonic stem cells (ESCs) from the BXD mouse genetic reference panel, along with C57BL/6J (B6) and DBA/2J (D2) parental strains, we demonstrate genetically determined biases in lineage commitment and identify major regulators of the pluripotency epigenome. Upon transition to formative pluripotency using epiblast-like cells (EpiLCs), B6 quickly dissolves naïve networks adopting gene expression modules indicative of neuroectoderm lineages; whereas D2 retains aspects of naïve pluripotency with little bias in differentiation. Genetic mapping identifies 6 major trans-acting loci co-regulating chromatin accessibility and gene expression in ESCs and EpiLCs, indicating a common regulatory system impacting cell state transition. These loci distally modulate occupancy of pluripotency factors, including TRIM28, P300, and POU5F1, at hundreds of regulatory elements. One trans-acting locus on Chr 12 primarily impacts chromatin accessibility in ESCs; while in EpiLCs the same locus subsequently influences gene expression, suggesting early chromatin priming. Consequently, the distal gene targets of this locus are enriched for neurogenesis genes and were more highly expressed when cells carried B6 haplotypes at this Chr 12 locus, supporting genetic regulation of biases in cell fate. Spontaneous formation of embryoid bodies validated this with B6 showing a propensity towards neuroectoderm differentiation and D2 towards definitive endoderm, confirming the fundamental importance of genetic variation influencing cell fate decisions.


Cell Medicine ◽  
2018 ◽  
Vol 10 ◽  
pp. 215517901773317
Author(s):  
Takako Tsugata ◽  
Naruo Nikoh ◽  
Tatsuya Kin ◽  
Chika Miyagi-Shiohira ◽  
Yoshiki Nakashima ◽  
...  

The low efficiency of in vitro differentiation of human embryonic stem cells (hESCs) or human-induced pluripotent stem cells (iPSCs) into insulin-producing cells is a crucial hurdle for the clinical implementation of human pluripotent stem cells (PSCs). Our previous investigation into the key factors for the differentiation of PSCs into insulin-producing cells suggested that the expression of GATA binding protein 6 (GATA6) and Gremlin 1 (GREM1) and inhibition of early growth response protein 1 (Egr1) may be important factors. In this study, we investigated the role of Egr1 in pancreas development. The transfection of small interfering RNA (siRNA) of Egr1 in the early phase induced the differentiation of iPSCs derived from fibroblasts (FiPSCs) into pancreatic endoderm and insulin-producing cells. In contrast, the downregulation of Egr1 in the late phase suppressed the differentiation of FiPSCs into pancreatic endoderm and insulin-producing cells. In addition, the overexpression of Egr1 suppressed the differentiation of iPSCs derived from pancreatic cells into pancreatic endoderm and insulin-producing cells. These data suggest that the downregulation of Egr1 in the early phase can efficiently induce the differentiation of iPSCs into insulin-producing cells.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Zhong-Yan Chen ◽  
Fei Chen ◽  
Nan Cao ◽  
Zhi-Wen Zhou ◽  
Huang-Tian Yang

MicroRNAs (miRNAs) play important roles in cell fate decisions. However, the miRNAs and their targets involved in the regulation of cardiac lineage specification are largely unexplored. Here, we report novel functions of miR-142-3p in the regulation of cardiomyocyte differentiation from mouse embryonic stem cells (mESCs). With a miRNA array screen, we identified a number of miRNAs significantly changed during mESC differentiation into the mesodermal and cardiac progenitor cells, and miR-142-3p was one among the markedly downregulated miRNAs. Ectopic expression and inhibition of miR-142-3p did not alter the characteristics of undifferentiated ESCs, whereas ectopic expression of miR-142-3p impaired cardiomyocyte formation. In addition, ectopic expression of miR-142-3p inhibited the expression of a cardiac mesodermal marker gene Mesp1 and downstream cardiac transcription factors Nkx2.5, Tbx5, and Mef2c but not the expression of three germ layer-specific genes. We further demonstrated that miR-142-3p targeted the 3′-untranslated region of Mef2c. These results reveal miR-142-3p as an important regulator of early cardiomyocyte differentiation. Our findings provide new knowledge for further understanding of roles and mechanisms of miRNAs as critical regulators of cardiomyocyte differentiation.


Sign in / Sign up

Export Citation Format

Share Document