scholarly journals Near atomic structure of the inner ring of the Saccharomyces cerevisiae nuclear pore complex

2021 ◽  
Author(s):  
Senfang Sui ◽  
Zongqiang li ◽  
Shuaijiabin Chen ◽  
Liang zhao ◽  
Guoqiang Huang ◽  
...  

Nuclear pore complexes (NPCs) mediate bidirectional nucleocytoplasmic transport of substances in eukaryotic cells. However, the accurate molecular arrangement of NPCs remains enigmatic owing to their huge size and highly dynamic nature. Here we determined the structure of the asymmetric unit of the inner ring (IR monomer) at 3.73 Angstrom resolution by single-particle cryo-electron microscopy, and created an atomic model of the intact IR consisting of 192 copies from 8 subunits. In each IR monomer, two approximately parallel rhomboidal structures of the inner and outer layers are sandwiched with the Z-shaped Nup188-Nup192 middle layer and Nup188, Nup192 and Nic96 link all subunits to constitute a relatively stable IR monomer, while the intact IR is assembled by loose and instable interactions between IR monomer. These structures reveal various interaction modes and extensive flexible connections in the assembly, providing a structural basis for the stability and malleability of IR.

2015 ◽  
Vol 208 (3) ◽  
pp. 283-297 ◽  
Author(s):  
Monika Gaik ◽  
Dirk Flemming ◽  
Alexander von Appen ◽  
Panagiotis Kastritis ◽  
Norbert Mücke ◽  
...  

Nuclear pore complexes (NPCs) are huge assemblies formed from ∼30 different nucleoporins, typically organized in subcomplexes. One module, the conserved Nup82 complex at the cytoplasmic face of NPCs, is crucial to terminate mRNA export. To gain insight into the structure, assembly, and function of the cytoplasmic pore filaments, we reconstituted in yeast the Nup82–Nup159–Nsp1–Dyn2 complex, which was suitable for biochemical, biophysical, and electron microscopy analyses. Our integrative approach revealed that the yeast Nup82 complex forms an unusual asymmetric structure with a dimeric array of subunits. Based on all these data, we developed a three-dimensional structural model of the Nup82 complex that depicts how this module might be anchored to the NPC scaffold and concomitantly can interact with the soluble nucleocytoplasmic transport machinery.


1997 ◽  
Vol 136 (6) ◽  
pp. 1185-1199 ◽  
Author(s):  
Mirella Bucci ◽  
Susan R. Wente

While much is known about the role of nuclear pore complexes (NPCs) in nucleocytoplasmic transport, the mechanism of NPC assembly into pores formed through the double lipid bilayer of the nuclear envelope is not well defined. To investigate the dynamics of NPCs, we developed a live-cell assay in the yeast Saccharomyces cerevisiae. The nucleoporin Nup49p was fused to the green fluorescent protein (GFP) of Aequorea victoria and expressed in nup49 null haploid yeast cells. When the GFP–Nup49p donor cell was mated with a recipient cell harboring only unlabeled Nup49p, the nuclei fused as a consequence of the normal mating process. By monitoring the distribution of the GFP–Nup49p, we could assess whether NPCs were able to move from the donor section of the nuclear envelope to that of the recipient nucleus. We observed that fluorescent NPCs moved and encircled the entire nucleus within 25 min after fusion. When assays were done in mutant kar1-1 strains, where nuclear fusion does not occur, GFP–Nup49p appearance in the recipient nucleus occurred at a very slow rate, presumably due to new NPC biogenesis or to exchange of GFP– Nup49p into existing recipient NPCs. Interestingly, in a number of existing mutant strains, NPCs are clustered together at permissive growth temperatures. This has been explained with two different hypotheses: by movement of NPCs through the double nuclear membranes with subsequent clustering at a central location; or, alternatively, by assembly of all NPCs at a central location (such as the spindle pole body) with NPCs in mutant cells unable to move away from this point. Using the GFP–Nup49p system with a mutant in the NPCassociated factor Gle2p that exhibits formation of NPC clusters only at 37°C, it was possible to distinguish between these two models for NPC dynamics. GFP– Nup49p-labeled NPCs, assembled at 23°C, moved into clusters when the cells were shifted to growth at 37°C. These results indicate that NPCs can move through the double nuclear membranes and, moreover, can do so to form NPC clusters in mutant strains. Such clusters may result by releasing NPCs from a nuclear tether, or by disappearance of a protein that normally prevents pore aggregation. This system represents a novel approach for identifying regulators of NPC assembly and movement in the future.


2020 ◽  
Author(s):  
Tae Yeon Yoo ◽  
Timothy J Mitchison

AbstractMacromolecular transport across the nuclear envelope depends on facilitated diffusion through nuclear pore complexes (NPCs). The interior of NPCs contains a permeability barrier made of phenylalanine-glycine (FG) repeat domains that selectively facilitates the permeation of cargoes bound to nuclear transport receptors (NTRs). FG repeats in NPC are a major site of O-linked N-acetylglucosamine (O-GlcNAc) modification, but the functional role of this modification in nucleocytoplasmic transport is unclear. We developed high-throughput assays based on optogenetic probes to quantify the kinetics of nuclear import and export in living human cells. We found that increasing O-GlcNAc modification of the NPC accelerated NTR-facilitated nucleocytoplasmic transport of proteins in both directions, and decreasing modification slowed transport. Super-resolution imaging revealed strong enrichment of O-GlcNAc at the FG-repeat barrier. O-GlcNAc modification also accelerated passive permeation of a small, inert protein through NPCs. We conclude that O-GlcNAc modification accelerates nucleocytoplasmic transport by enhancing the non-specific permeability the FG-repeat barrier, perhaps by steric inhibition of interactions between FG repeats.SummaryNuclear pore complexes mediate nuclear transport and are highly modified with O-linked N-acetylglucosamine (O-GlcNAc) on FG repeat domains. Using a new quantitative live-cell imaging assay, Yoo and Mitchison demonstrate acceleration of nuclear import and export by O-GlcNAc modification.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1414 ◽  
Author(s):  
Terra M. Kuhn ◽  
Maya Capelson

Nuclear pore complexes (NPCs) are canonically known to regulate nucleocytoplasmic transport. However, research efforts over the last decade have demonstrated that NPCs and their constituent nucleoporins (Nups) also interact with the genome and perform important roles in regulation of gene expression. It has become increasingly clear that many Nups execute these roles specifically through regulation of chromatin state, whether through interactions with histone modifiers and downstream changes in post-translational histone modifications, or through relationships with chromatin-remodeling proteins that can result in physical changes in nucleosome occupancy and chromatin compaction. This review focuses on these findings, highlighting the functional connection between NPCs/Nups and regulation of chromatin structure, and how this connection can manifest in regulation of transcription.


2012 ◽  
Vol 198 (3) ◽  
pp. 343-355 ◽  
Author(s):  
Gero Steinberg ◽  
Martin Schuster ◽  
Ulrike Theisen ◽  
Sreedhar Kilaru ◽  
Andrew Forge ◽  
...  

Exchange between the nucleus and the cytoplasm is controlled by nuclear pore complexes (NPCs). In animals, NPCs are anchored by the nuclear lamina, which ensures their even distribution and proper organization of chromosomes. Fungi do not possess a lamina and how they arrange their chromosomes and NPCs is unknown. Here, we show that motor-driven motility of NPCs organizes the fungal nucleus. In Ustilago maydis, Aspergillus nidulans, and Saccharomyces cerevisiae fluorescently labeled NPCs showed ATP-dependent movements at ∼1.0 µm/s. In S. cerevisiae and U. maydis, NPC motility prevented NPCs from clustering. In budding yeast, NPC motility required F-actin, whereas in U. maydis, microtubules, kinesin-1, and dynein drove pore movements. In the latter, pore clustering resulted in chromatin organization defects and led to a significant reduction in both import and export of GFP reporter proteins. This suggests that fungi constantly rearrange their NPCs and corresponding chromosomes to ensure efficient nuclear transport and thereby overcome the need for a structural lamina.


1996 ◽  
Vol 134 (5) ◽  
pp. 1141-1156 ◽  
Author(s):  
R Bastos ◽  
A Lin ◽  
M Enarson ◽  
B Burke

Nup153 is a large (153 kD) O-linked glyco-protein which is a component of the basket structure located on the nucleoplasmic face of nuclear pore complexes. This protein exhibits a tripartite structure consisting of a zinc finger domain flanked by large (60-70 kD) NH2- and COOH-terminal domains. When full-length human Nup153 is expressed in BHK cells, it accumulates appropriately at the nucleoplasmic face of the nuclear envelope. Targeting information for Nup153 resides in the NH2-terminal domain since this region of the molecule can direct an ordinarily cytoplasmic protein, pyruvate kinase, to the nuclear face of the nuclear pore complex. Overexpression of Nup153 results in the dramatic accumulation of nuclear poly (A)+ RNA, suggesting an inhibition of RNA export from the nucleus. This is not due to a general decline in nucleocytoplasmic transport or to occlusion or loss of nuclear pore complexes since nuclear protein import is unaffected. While overexpression of certain Nup153 constructs was found to result in the formation of unusual intranuclear membrane arrays, this structural phenotype could not be correlated with the effects on poly (A)+ RNA distribution. The RNA trafficking defect was, however, dependent upon the Nup153 COOH-terminal domain which contains most of the XFXFG repeats. It is proposed that this region of Nup153, lying within the distal ring of the nuclear basket, represents a docking site for mRNA molecules exiting the nucleus.


2016 ◽  
Vol 27 (17) ◽  
pp. 2742-2756 ◽  
Author(s):  
Biplab Paul ◽  
Ben Montpetit

Many protein factors are required for mRNA biogenesis and nuclear export, which are central to the eukaryotic gene expression program. It is unclear, however, whether all factors have been identified. Here we report on a screen of >1000 essential gene mutants in Saccharomyces cerevisiae for defects in mRNA processing and export, identifying 26 mutants with defects in this process. Single-molecule FISH data showed that the majority of these mutants accumulated mRNA within specific regions of the nucleus, which included 1) mRNAs within the nucleolus when nucleocytoplasmic transport, rRNA biogenesis, or RNA processing and surveillance was disrupted, 2) the buildup of mRNAs near transcription sites in 3′-end processing and chromosome segregation mutants, and 3) transcripts being enriched near nuclear pore complexes when components of the mRNA export machinery were mutated. These data show that alterations to various nuclear processes lead to the retention of mRNAs at discrete locations within the nucleus.


1995 ◽  
Vol 129 (4) ◽  
pp. 939-955 ◽  
Author(s):  
L C Gorsch ◽  
T C Dockendorff ◽  
C N Cole

In a screen for Saccharomyces cerevisiae genes required for nucleocytoplasmic transport of messenger RNA, we identified the RAT7 gene (ribonucleic acid trafficking), which encodes an essential protein of 1,460 amino acids. Rat7p is located at the nuclear rim in a punctate pattern characteristic of nucleoporins. Furthermore, the central third of Rat7p contains 22 XXFG and three XFXFG degenerate repeats that are similar to signature GLFG and XFXFG repeats present in a majority of yeast and some mammalian nucleoporins sequenced to date. Shift of a strain bearing the temperature-sensitive rat7-1 allele from 23 degrees C to 37 degrees C resulted in rapid (within 15 minutes) cessation of mRNA export, but did not cause concomitant cytoplasmic accumulation of a reporter protein bearing a nuclear localization signal. This suggests that Rat7p may play a direct role in nucleocytoplasmic export of RNA. Immunofluorescence and thin section electron microscopy revealed that in rat7-1 cells grown at 23 degrees C, the majority of nuclear pore complexes (NPCs) were clustered on one side of the nucleus. No ultrastructural abnormalities of the nuclear envelope were seen. Interestingly, shifting rat7-1 cells to 37 degrees C for 1 h caused the NPCs to disperse, restoring near wild-type NPC distribution. After this temperature shift, the mutant Rat7p was no longer detectable by immunofluorescence.


2021 ◽  
Vol 221 (2) ◽  
Author(s):  
Banafsheh Golchoubian ◽  
Andreas Brunner ◽  
Helena Bragulat-Teixidor ◽  
Annett Neuner ◽  
Busra A. Akarlar ◽  
...  

Nuclear pore complexes (NPCs) are channels within the nuclear envelope that mediate nucleocytoplasmic transport. NPCs form within the closed nuclear envelope during interphase or assemble concomitantly with nuclear envelope reformation in late stages of mitosis. Both interphase and mitotic NPC biogenesis require coordination of protein complex assembly and membrane deformation. During early stages of mitotic NPC assembly, a seed for new NPCs is established on chromatin, yet the factors connecting the NPC seed to the membrane of the forming nuclear envelope are unknown. Here, we report that the reticulon homology domain protein REEP4 not only localizes to high-curvature membrane of the cytoplasmic endoplasmic reticulum but is also recruited to the inner nuclear membrane by the NPC biogenesis factor ELYS. This ELYS-recruited pool of REEP4 promotes NPC assembly and appears to be particularly important for NPC formation during mitosis. These findings suggest a role for REEP4 in coordinating nuclear envelope reformation with mitotic NPC biogenesis.


2001 ◽  
Vol 65 (4) ◽  
pp. 570-594 ◽  
Author(s):  
Ian G. Macara

SUMMARY A defining characteristic of eukaryotic cells is the possession of a nuclear envelope. Transport of macromolecules between the nuclear and cytoplasmic compartments occurs through nuclear pore complexes that span the double membrane of this envelope. The molecular basis for transport has been revealed only within the last few years. The transport mechanism lacks motors and pumps and instead operates by a process of facilitated diffusion of soluble carrier proteins, in which vectoriality is provided by compartment-specific assembly and disassembly of cargo-carrier complexes. The carriers recognize localization signals on the cargo and can bind to pore proteins. They also bind a small GTPase, Ran, whose GTP-bound form is predominantly nuclear. Ran-GTP dissociates import carriers from their cargo and promotes the assembly of export carriers with cargo. The ongoing discovery of numerous carriers, Ran-independent transport mechanisms, and cofactors highlights the complexity of the nuclear transport process. Multiple regulatory mechanisms are also being identified that control cargo-carrier interactions. Circadian rhythms, cell cycle, transcription, RNA processing, and signal transduction are all regulated at the level of nucleocytoplasmic transport. This review focuses on recent discoveries in the field, with an emphasis on the carriers and cofactors involved in transport and on possible mechanisms for movement through the nuclear pores.


Sign in / Sign up

Export Citation Format

Share Document