reporter proteins
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 22)

H-INDEX

21
(FIVE YEARS 3)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12226
Author(s):  
Theeraphol Jatuponwiphat ◽  
Thanawat Namrak ◽  
Sunee Nitisinprasert ◽  
Massalin Nakphaichit ◽  
Wanwipa Vongsangnak

Limosilactobacillus reuteri KUB-AC5 has been widely used as probiotic in chicken for Salmonella reduction. However, a preferable carbon source and growth phase is poorly characterized underlying metabolic responses on growth and inhibition effects of L. reuteri KUB-AC5. This study therefore aimed to investigate transcriptome profiling of L. reuteri KUB-AC5 revealing global metabolic responses when alteration of carbon sources and growth phases. Interestingly, L. reuteri KUB-AC5 grown under sucrose culture showed to be the best for fast growth and inhibition effects against Salmonella Enteritidis S003 growth. Towards the transcriptome profiling and reporter proteins/metabolites analysis, the results showed that amino acid transport via ABC systems as well as sucrose metabolism and transport are key metabolic responses at Logarithmic (L)-phase of L. reuteri KUB-AC5 growth. Considering the Stationary (S)-phase, we found the potential reporter proteins/metabolites involved in carbohydrate metabolism e.g., levansucrase and levan. Promisingly, levansucrase and levan were revealed to be candidates in relation to inhibition effects of L. reuteri KUB-AC5. Throughout this study, L. reuteri KUB-AC5 had a metabolic control in acclimatization to sucrose and energy pools through transcriptional co-regulation, which supported the cell growth and inhibition potentials. This study offers a perspective in optimizing fermentation condition through either genetic or physiological approaches for enhancing probiotic L. reuteri KUB-AC5 properties.


2021 ◽  
Vol 18 (10) ◽  
pp. 1149-1149
Author(s):  
Arunima Singh
Keyword(s):  

2021 ◽  
Vol 22 (16) ◽  
pp. 8797
Author(s):  
Yi-Hsueh Lee ◽  
Menq-Rong Wu ◽  
Jong-Kai Hsiao

Membrane proteins responsible for transporting magnetic resonance (MR) and fluorescent contrast agents are of particular importance because they are potential reporter proteins in noninvasive molecular imaging. Gadobenate dimeglumine (Gd-BOPTA), a liver-specific MR contrast agent, has been used globally for more than 10 years. However, the corresponding molecular transportation mechanism has not been validated. We previously reported that the organic anion transporting polypeptide (OATP) 1B3 has an uptake capability for both MR agents (Gd-EOB-DTPA) and indocyanine green (ICG), a clinically available near-infrared (NIR) fluorescent dye. This study further evaluated OATP1B1, another polypeptide of the OATP family, to determine its reporter capability. In the OATP1B1 transfected 293T transient expression model, both Gd-BOPTA and Gd-EOB-DTPA uptake were confirmed through 1.5 T MR imaging. In the constant OAPT1B1 and OATP1B3 expression model in the HT-1080 cell line, both HT-1080-OAPT1B1 and HT-1080-OATP1B3 were observed to ingest Gd-BOPTA and Gd-EOB-DTPA. Lastly, we validated the ICG uptake capability of both OATP1B1 and OATP1B3. OAPT1B3 exhibited a superior ICG uptake capability to that of OAPT1B1. We conclude that OATP1B1 is a potential reporter for dual MR and NIR fluorescent molecular imaging, especially in conjunction with Gd-BOPTA.


BioTechniques ◽  
2021 ◽  
Author(s):  
Armelle Roisin ◽  
Samuel Buchsbaum ◽  
Vincent Mocquet ◽  
Pierre Jalinot

The stability of intracellular proteins is highly variable, from a few minutes to several hours, and can be tightly regulated to respond to external and internal cellular environment changes. Several techniques can be used to study the stability of a specific protein, including pulse-chase labeling and blocking of translation. Another approach that has gained interest in recent years is fusing a protein of interest to a fluorescent reporter. In this report, the authors present a new version of this approach aimed at optimizing expression and comparison of the two reporter proteins. The authors show that the system works efficiently in various cells and can be useful for studying changes in protein stability and assessing the effects of drugs.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Amin Addetia ◽  
Nicole A. P. Lieberman ◽  
Quynh Phung ◽  
Tien-Ying Hsiang ◽  
Hong Xie ◽  
...  

ABSTRACT RNA viruses that replicate in the cytoplasm often disrupt nucleocytoplasmic transport to preferentially translate their own transcripts and prevent host antiviral responses. The Sarbecovirus accessory protein ORF6 has previously been shown to be a major inhibitor of interferon production in both severe acute respiratory syndrome coronavirus (SARS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we show SARS-CoV-2-infected cells display an elevated level of nuclear mRNA accumulation compared to mock-infected cells. We demonstrate that ORF6 is responsible for this nuclear imprisonment of host mRNA, and using a cotransfected reporter assay, we show this nuclear retention of mRNA blocks expression of newly transcribed mRNAs. ORF6’s nuclear entrapment of host mRNA is associated with its ability to copurify with the mRNA export factors, Rae1 and Nup98. These protein-protein interactions map to the C terminus of ORF6 and can be abolished by a single amino acid mutation in Met58. Overexpression of Rae1 restores reporter expression in the presence of SARS-CoV-2 ORF6. SARS-CoV ORF6 also interacts with Rae1 and Nup98. However, SARS-CoV-2 ORF6 more strongly copurifies with Rae1 and Nup98 and results in significantly reduced expression of reporter proteins compared to SARS-CoV ORF6, a potential mechanism for the delayed symptom onset and presymptomatic transmission uniquely associated with the SARS-CoV-2 pandemic. We also show that both SARS-CoV and SARS-CoV-2 ORF6 block nuclear import of a broad range of host proteins. Together, these data support a model in which ORF6 clogs the nuclear pore through its interactions with Rae1 and Nup98 to prevent both nuclear import and export, rendering host cells incapable of responding to SARS-CoV-2 infection. IMPORTANCE SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19), is an RNA virus with a large genome that encodes multiple accessory proteins. While these accessory proteins are not required for growth in vitro, they can contribute to the pathogenicity of the virus. We demonstrate that SARS-CoV-2-infected cells accumulate poly(A) mRNA in the nucleus, which is attributed to the accessory protein ORF6. Nuclear entrapment of mRNA and reduced expression of newly transcribed reporter proteins are associated with ORF6’s interactions with the mRNA export proteins Rae1 and Nup98. SARS-CoV ORF6 also shows the same interactions with Rae1 and Nup98. However, SARS-CoV-2 ORF6 more strongly represses reporter expression and copurifies with Rae1 and Nup98 compared to SARS-CoV ORF6. Both SARS-CoV ORF6 and SARS-CoV-2 ORF6 block nuclear import of a wide range of host factors through interactions with Rae1 and Nup98. Together, our results suggest ORF6’s disruption of nucleocytoplasmic transport prevents infected cells from responding to the invading virus.


2021 ◽  
Author(s):  
Anielle Christine Almeida Silva ◽  
Jerusa Maria de Oliveira ◽  
Kelen Talita Romão da Silva ◽  
Francisco Rubens Alves dos Santos ◽  
João Paulo Santos de Carvalho ◽  
...  

This book chapter will comment on fluorescent reporter proteins and nanocrystals’ applicability as fluorescent markers. Fluorescent reporter proteins in the Drosophila model system offer a degree of specificity that allows monitoring cellular and biochemical phenomena in vivo, such as autophagy, mitophagy, and changes in the redox state of cells. Titanium dioxide (TiO2) nanocrystals (NCs) have several biological applications and emit in the ultraviolet, with doping of europium ions can be visualized in the red luminescence. Therefore, it is possible to monitor nanocrystals in biological systems using different emission channels. CdSe/CdS magic-sized quantum dots (MSQDs) show high luminescence stability in biological systems and can be bioconjugated with biological molecules. Therefore, this chapter will show exciting results of the group using fluorescent proteins and nanocrystals in biological systems.


2021 ◽  
Vol 105 (6) ◽  
pp. 2385-2397
Author(s):  
Minmin Wang ◽  
Chunxiao Mou ◽  
Mi Chen ◽  
Zhenhai Chen
Keyword(s):  

Author(s):  
E. L. Ilina ◽  
A. S. Kiryushkin ◽  
E. D. Guseva ◽  
K. N. Demchenko

The method of Agrobacterium rhizogenes-mediated transformation of buckwheat has been established; composite plants have been obtained. The distribution of the cellular response to auxin by reporter proteins with different maturation times coincides.


2020 ◽  
Vol 21 (21) ◽  
pp. 7978
Author(s):  
Alexander A. Dolskiy ◽  
Irina V. Grishchenko ◽  
Dmitry V. Yudkin

Virus detection in natural and clinical samples is a complicated problem in research and diagnostics. There are different approaches for virus isolation and identification, including PCR, CRISPR/Cas technology, NGS, immunoassays, and cell-based assays. Following the development of genetic engineering methods, approaches that utilize cell cultures have become useful and informative. Molecular biology methods allow increases in the sensitivity and specificity of cell cultures for certain viruses and can be used to generate reporter cell lines. These cell lines express specific reporter proteins (e.g., GFP, luciferase, and CAT) in response to virus infection that can be detected in a laboratory setting. The development of genome editing and synthetic biology methods has given rise to new perspectives regarding the design of virus reporter systems in cell cultures. This review is aimed at describing both virology methods in general and examples of the development of cell-based methods that exist today.


Blood ◽  
2020 ◽  
Author(s):  
Zhenyu Hao ◽  
Dayun Jin ◽  
Xuejie Chen ◽  
Leon J. Schurgers ◽  
Darrel W. Stafford ◽  
...  

Gamma-glutamyl carboxylase (GGCX) is an integral membrane protein that catalyzes posttranslational carboxylation of a number of vitamin K-dependent (VKD) proteins involved in a wide variety of physiological processes, including blood coagulation, vascular calcification, and bone metabolism. Naturally occurring GGCX mutations are associated with multiple distinct clinical phenotypes. However, the genotype-phenotype correlation of GGCX remains elusive. Here, we systematically examined the effect of all naturally occurring GGCX mutations on the carboxylation of three structure-function distinct VKD proteins in a cellular environment. GGCX mutations were transiently introduced into GGCX-deficient human embryonic kidney 293 cells stably expressing chimeric coagulation factor, matrix Gla protein (MGP), or osteocalcin as VKD reporter-proteins, then the carboxylation efficiency of these reporter-proteins were evaluated. Our results show that GGCX mutations differentially affect the carboxylation of these reporter-proteins and the efficiency of using vitamin K as a cofactor. Carboxylation of these reporter-proteins by a C-terminal truncation mutation (R704X) implies that GGCX's C-terminus plays a critical role in the binding of osteocalcin, but not in the binding of coagulation factors and MGP. This has been confirmed by probing the protein-protein interaction between GGCX and its protein substrates in live cells using bimolecular fluorescence complementation and chemical cross-linking assays. Additionally, using a minigene splicing assay, we demonstrated that several GGCX missense mutations affect GGCX's pre-mRNA splicing rather than altering the corresponding amino acid residues. Results from this study interpreted the correlation of GGCX's genotype and its clinical phenotypes, and clarified why vitamin K administration rectified bleeding disorders but not non-bleeding disorders.


Sign in / Sign up

Export Citation Format

Share Document