scholarly journals Possible Interference in Protein – Protein interaction as a new approach in microinhibition of respiratory pathogens on nasal– oral epithelium: An early on-screen study with reference toSARS-Cov-2–ACE2 binding interference

2021 ◽  
Author(s):  
Debatosh Datta ◽  
Suyash Pant ◽  
Devendra Kumar Dhaked ◽  
Somasundaram Arumugam ◽  
Ravichandiran Velayutham ◽  
...  

AbstractUpper and lower respiratory pathogens – both microbes and viruses –are responsible for very high morbidity, man-hour loss, residual long term clinical conditions and even mortality. In india only, high incidence of annual respiratory infections – both UT and LT – demands prophylactic intervention in addition to all therapeutic interventions available.The issue of respiratory infections is more pronounced now in the backdrop of nearly uncontrolled high incidences of SARS-Cov-2 affection resulting in death and damage of human lives to the extent of hundreds of millions spreading over entire world, with incidence variations from country to country. After the initial unanswered phase of spread of SARS-Cov-2 virus with attendant unseen mortalities, quickest invention of a series of unusual vaccines have stemmed the lethal progress to a very significant extent, although vaccinating each and every human subject – nearly 8 to 9 bn in supremely divided world –economically-- is an unthinkable proposition where economic disparity dictates vaccine availability and implementation.Moreover, being of highly unstable nucleic acid composition, the original virus, by now has a thick set of variants around the globe with variable clinical outcome. Given this complex background of scanty availability and inefficient implementation, there always is a need of a preventive approach which can possibly micro-fix the pathogens, including SARS-2 on nasal epithelium so as to interfere with viral [or any pathogen] entry through specified receptor gate[s] or any other ways. The present formulation is under study -- as a candidate of interference on nasal / oral mucosa for all respiratory pathogens. This brief report describes dry on-screen studies of protein – protein interaction as well as its possible interference by an amino acid Lysine. Phospholipid bilayerresponses in presence of added loads of the same essential amino acid –Lysine – showed unusual and unexplained behavior both in structural integrity as well in spatial orientation.

2019 ◽  
Vol 94 (1) ◽  
Author(s):  
M. V. Borca ◽  
E. A. Vuono ◽  
E. Ramirez-Medina ◽  
P. Azzinaro ◽  
K. A. Berggren ◽  
...  

ABSTRACT The E2 protein in classical swine fever (CSF) virus (CSFV) is the major virus structural glycoprotein and is an essential component of the viral particle. E2 has been shown to be involved in several functions, including virus adsorption, induction of protective immunity, and virulence in swine. Using the yeast two-hybrid system, we previously identified a swine host protein, dynactin subunit 6 (DCTN6) (a component of the cell dynactin complex), as a specific binding partner for E2. We confirmed the interaction between DCTN6 and E2 proteins in CSFV-infected swine cells by using two additional independent methodologies, i.e., coimmunoprecipitation and proximity ligation assays. E2 residues critical for mediating the protein-protein interaction with DCTN6 were mapped by a reverse yeast two-hybrid approach using a randomly mutated E2 library. A recombinant CSFV mutant, E2ΔDCTN6v, harboring specific substitutions in those critical residues was developed to assess the importance of the E2-DCTN6 protein-protein interaction for virus replication and virulence in swine. CSFV E2ΔDCTN6v showed reduced replication, compared with the parental virus, in an established swine cell line (SK6) and in primary swine macrophage cultures. Remarkably, animals infected with CSFV E2ΔDCTN6v remained clinically normal during the 21-day observation period, which suggests that the ability of CSFV E2 to bind host DCTN6 protein efficiently during infection may play a role in viral virulence. IMPORTANCE Structural glycoprotein E2 is an important component of CSFV due to its involvement in many virus activities, particularly virus-host interactions. Here, we present the description and characterization of the protein-protein interaction between E2 and the swine host protein DCTN6 during virus infection. The E2 amino acid residues mediating the interaction with DCTN6 were also identified. A recombinant CSFV harboring mutations disrupting the E2-DCTN6 interaction was created. The effect of disrupting the E2-DCTN6 protein-protein interaction was studied using reverse genetics. It was shown that the same amino acid substitutions that abrogated the E2-DCTN6 interaction in vitro constituted a critical factor in viral virulence in the natural host, domestic swine. This highlights the potential importance of the E2-DCTN6 protein-protein interaction in CSFV virulence and provides possible mechanisms of virus attenuation for the development of improved CSF vaccines.


2021 ◽  
Vol 11 (5) ◽  
pp. 578
Author(s):  
Oge Gozutok ◽  
Benjamin Ryan Helmold ◽  
P. Hande Ozdinler

Hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS) are rare motor neuron diseases, which affect mostly the upper motor neurons (UMNs) in patients. The UMNs display early vulnerability and progressive degeneration, while other cortical neurons mostly remain functional. Identification of numerous mutations either directly linked or associated with HSP and PLS begins to reveal the genetic component of UMN diseases. Since each of these mutations are identified on genes that code for a protein, and because cellular functions mostly depend on protein-protein interactions, we hypothesized that the mutations detected in patients and the alterations in protein interaction domains would hold the key to unravel the underlying causes of their vulnerability. In an effort to bring a mechanistic insight, we utilized computational analyses to identify interaction partners of proteins and developed the protein-protein interaction landscape with respect to HSP and PLS. Protein-protein interaction domains, upstream regulators and canonical pathways begin to highlight key cellular events. Here we report that proteins involved in maintaining lipid homeostasis and cytoarchitectural dynamics and their interactions are of great importance for UMN health and stability. Their perturbation may result in neuronal vulnerability, and thus maintaining their balance could offer therapeutic interventions.


1998 ◽  
Vol 8 (2) ◽  
pp. 193-200 ◽  
Author(s):  
M. K. Walker-Simmons

AbstractReversible phosphorylation is catalysed by protein kinases that transfer the γ-phosphate from ATP to amino acid residues of proteins. The process can be reversed by protein phosphatases. Phosphorylation can dramatically activate or inhibit enzymes and affect protein-protein interaction. Through phosphorylation protein kinases can amplify and propagate cellular signals. In plants and now seeds, protein kinases involved in hormone, defence and environmental stress responses are being identified. Increasingly, these protein kinases are being cloned and characterized, demonstrating the major role of reversible protein phosphorylation in seeds.


2000 ◽  
Vol 11 (2) ◽  
pp. 270-282
Author(s):  
EDGAR OTTO ◽  
ANDREAS KISPERT ◽  
SILVIA SCHÄTZLE ◽  
BIRGIT LESCHER ◽  
CORNELIA RENSING ◽  
...  

Juvenile nephronophthisis, an autosomal recessive cystic kidney disease, is the primary genetic cause for chronic renal failure in children. The gene (NPHP 1) for nephronophthisis type 1 has recently been identified. Its gene product, nephrocystin, is a novel protein of unknown function, which contains a src-homology 3 domain. To study tissue expression and analyze amino acid sequence conservation of nephrocystin, the full-length murine Nphp 1 cDNA sequence was obtained and Northern and in situ hybridization analyses were performed for extensive expression studies. The results demonstrate widespread but relatively weak NPHP 1 expression in the human adult. In the adult mouse there is strong expression in testis. This expression occurs specifically in cell stages of the first meiotic division and thereafter. In situ hybridization to whole mouse embryos demonstrated widespread and uniform expression at all developmental stages. Amino acid sequence conservation studies in human, mouse, and Caenorhabditis elegans show that in nephrocystin the src-homology 3 domain is embedded in a novel context of other putative domains of protein-protein interaction, such as coiled-coil and E-rich domains. It is concluded that for multiple putative protein-protein interaction domains of nephrocystin, sequence conservation dates back at least to Caenorhabditis elegans. The previously described discrepancy between widespread tissue expression and the restriction of symptoms to the kidney has now been confirmed by an in-depth expression study.


Sign in / Sign up

Export Citation Format

Share Document