scholarly journals Mucosal memory T cells in breastmilk are modulated by SARS-CoV-2 mRNA vaccination

Author(s):  
Blair Armistead ◽  
Yonghou Jiang ◽  
Marc Carlson ◽  
Emily S Ford ◽  
Saumya Jani ◽  
...  

AbstractWe compared the phenotype, diversity, and antigen specificity of T cells in the breastmilk and peripheral blood of lactating individuals who received SARS-CoV-2 mRNA vaccination. Relative to blood, breastmilk contained higher frequencies of T effector and central memory populations that expressed mucosal-homing markers. T cell receptor (TCR) sequence overlap was limited between blood and breastmilk. Overabundant breastmilk clones were observed in all individuals, were structurally diverse, and contained CDR3 sequences with known epitope specificity including to SARS-CoV-2 Spike. Spike-specific TCRs were more frequent in breastmilk compared to blood and expanded in breastmilk following a third mRNA vaccine dose. Our observations indicate that the lactating breast contains a distinct T cell population that can be modulated by maternal vaccination with potential implications for infant passive protection.SummaryThe breastmilk T cell repertoire is distinct and enriched for SARS-CoV-2 Spike-specificity after maternal mRNA vaccination.

2022 ◽  
Vol 12 ◽  
Author(s):  
Guangyao Tian ◽  
Mingqian Li ◽  
Guoyue Lv

T cells play a key role in determining allograft function by mediating allogeneic immune responses to cause rejection, and recent work pointed their role in mediating tolerance in transplantation. The unique T-cell receptor (TCR) expressed on the surface of each T cell determines the antigen specificity of the cell and can be the specific fingerprint for identifying and monitoring. Next-generation sequencing (NGS) techniques provide powerful tools for deep and high-throughput TCR profiling, and facilitate to depict the entire T cell repertoire profile and trace antigen-specific T cells in circulation and local tissues. Tailing T cell transcriptomes and TCR sequences at the single cell level provides a full landscape of alloreactive T-cell clones development and biofunction in alloresponse. Here, we review the recent advances in TCR sequencing techniques and computational tools, as well as the recent discovery in overall TCR profile and antigen-specific T cells tracking in transplantation. We further discuss the challenges and potential of using TCR sequencing-based assays to profile alloreactive TCR repertoire as the fingerprint for immune monitoring and prediction of rejection and tolerance.


2019 ◽  
Author(s):  
Dmitrii S Shcherbinin ◽  
Vlad A Belousov ◽  
Mikhail Shugay

AbstractAntigen recognition by T-cells is guided by the T-cell receptor (TCR) heterodimer formed by α and β chains. A huge diversity of TCR sequences should be maintained by the immune system in order to be able to mount an effective response towards foreign pathogens, so, due to cooperative binding of α and β chains to the pathogen, any constraints on chain pairing can have a profound effect on immune repertoire structure, diversity and antigen specificity. By integrating available structural data and paired chain sequencing results we were able to show that there are almost no constraints on pairing in TCRαβ complexes, allowing naive T-cell repertoire to reach the highest possible diversity. Additional analysis reveals that the specific choice of contacting amino acids can still have a profound effect on complex conformation. Moreover, antigen-driven selection can distort the uniform landscape of chain pairing, while small, yet significant, differences in the pairing can be attributed to various specialized T-cell subsets such as MAIT and iNKT T-cells, as well as other putative invariant TCRs.


2001 ◽  
Vol 75 (2) ◽  
pp. 1065-1071 ◽  
Author(s):  
Mineki Saito ◽  
Graham P. Taylor ◽  
Akiko Saito ◽  
Yoshitaka Furukawa ◽  
Koichiro Usuku ◽  
...  

ABSTRACT Using HLA-peptide tetrameric complexes, we isolated human T-cell lymphotrophic virus type 1 Tax peptide-specific CD8+ T cells ex vivo. Antigen-specific amino acid motifs were identified in the T-cell receptor Vβ CDR3 region of clonally expanded CD8+ T cells. This result directly confirms the importance of the CDR3 region in determining the antigen specificity in vivo.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5186-5186
Author(s):  
Ronald M. Paranal ◽  
Hagop M. Kantarjian ◽  
Alexandre Reuben ◽  
Celine Kerros ◽  
Priya Koppikar ◽  
...  

Introduction: Allogeneic hematopoietic stem-cell transplantation (HSCT) is curative for many patients with advanced hematologic cancers, including adverse-risk acute myeloid leukemia (AML). This is principally through the induction of a graft-versus-leukemia (GVL) immune effect, mediated by donor T-cells. The incredible diversity and specificity of T-cells is due to rearrangement between V, D, and J regions and the random insertion/deletion of nucleotides, taking place in the hypervariable complementarity determining region 3 (CD3) of the T-cell receptor (TCR). Massively parallel sequencing of CDR3 allows for a detailed understanding of the T-cell repertoire, an area relatively unexplored in AML. Therefore, we sought out to characterize the T-cell repertoire in AML before and after HSCT, specifically for those with a durable remission. Methods: We identified 45 bone marrow biopsy samples, paired pre- and post-HSCT, from 14 patients with AML in remission for > 2 years as of last follow-up. We next performed immunosequencing of the TCRβ repertoire (Adaptive Biotechnologies). DNA was amplified in a bias-controlled multiplex PCR, resulting in amplification of rearranged VDJ segments, followed by high-throughput sequencing. Resultant sequences were collapsed and filtered in order to identify and quantitate the absolute abundance of each unique TCRβ CDR3 region. We next employed various metrics to characterize changes in the TCR repertoire: (1) clonality (range: 0-1; values closer to 1 indicate a more oligoclonal repertoire), it accounts for both the number of unique clonotypes and the extent to which a few clonotypes dominate the repertoire; (2) richness with a higher number indicating a more diverse repertoire with more unique rearrangements); (3) overlap (range: 0-1; with 1 being an identical T-cell repertoire). All calculations were done using the ImmunoSeq Analyzer software. Results: The median age of patients included in this cohort was 58 years (range: 31-69). Six patient (43%) had a matched related donor, and 8 (57%) had a matched unrelated donor. Baseline characteristics are summarized in Figure 1A. Six samples were excluded from further analysis due to quality. TCR richness did not differ comparing pre- and post-HSCT, with a median number pre-HSCT of 3566 unique sequences (range: 1282-22509) vs 3720 (range: 1540-12879) post-HSCT (P = 0.7). In order to assess whether there was expansion of certain T-cell clones following HSCT, we employed several metrics and all were indicative of an increase in clonality (Figure 2B). Productive clonality, a measure of reactivity, was significantly higher in post-transplant samples (0.09 vs 0.02, P = 0.003). This is a measure that would predict expansion of sequences likely to produce functional TCRs. The Maximum Productive Frequency Index was higher post-HSCT indicating that the increase in clonality was driven by the top clone (most prevalent per sample). Similarly for the Simpson's Dominance index, another marker of clonality which was higher post-HSCT (0.01 vs 0.0009, P = 0.04). In order to determine whether this clonal expansion was driven by TCR clones shared among patients, we compared the degree of overlap in unique sequences among pre and post-HSCT samples. We found there was very little overlap between samples in the pre and the post-transplant setting and no change in the Morisita and Jaccard Overlap Indices. Conclusions: In conclusion, we show in this analysis an increase in clonality of T-cells following HSCT in patients with AML. This is likely related to the GVL effect after recognition of leukemia antigens by donor T cells and subsequent expansion of these T-cells. These expanded T-cell clonotypes were unlikely to be shared by patients in this cohort, likely reflecting the variety of antigens leading to the GVL effect. This could have direct implications on TCR-mediated immune-therapies given the likely need for a personalized, patient-specific design for these therapies. Figure 1 Disclosures Kantarjian: BMS: Research Funding; Novartis: Research Funding; AbbVie: Honoraria, Research Funding; Jazz Pharma: Research Funding; Astex: Research Funding; Immunogen: Research Funding; Actinium: Honoraria, Membership on an entity's Board of Directors or advisory committees; Agios: Honoraria, Research Funding; Daiichi-Sankyo: Research Funding; Takeda: Honoraria; Amgen: Honoraria, Research Funding; Cyclacel: Research Funding; Ariad: Research Funding; Pfizer: Honoraria, Research Funding. Short:Takeda Oncology: Consultancy, Research Funding; AstraZeneca: Consultancy; Amgen: Honoraria. Cortes:Takeda: Consultancy, Research Funding; Bristol-Myers Squibb: Consultancy, Research Funding; Jazz Pharmaceuticals: Consultancy, Research Funding; Sun Pharma: Research Funding; BiolineRx: Consultancy; Novartis: Consultancy, Honoraria, Research Funding; Astellas Pharma: Consultancy, Honoraria, Research Funding; Merus: Consultancy, Honoraria, Research Funding; Immunogen: Consultancy, Honoraria, Research Funding; Biopath Holdings: Consultancy, Honoraria; Daiichi Sankyo: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Honoraria, Research Funding; Forma Therapeutics: Consultancy, Honoraria, Research Funding. Jabbour:Cyclacel LTD: Research Funding; Pfizer: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; AbbVie: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; BMS: Consultancy, Research Funding; Adaptive: Consultancy, Research Funding. Molldrem:M. D. Anderson & Astellas Pharma: Other: Royalties.


2016 ◽  
Vol 8 (332) ◽  
pp. 332ra46-332ra46 ◽  
Author(s):  
Qian Qi ◽  
Mary M. Cavanagh ◽  
Sabine Le Saux ◽  
Hong NamKoong ◽  
Chulwoo Kim ◽  
...  

Diversity and size of the antigen-specific T cell receptor (TCR) repertoire are two critical determinants for successful control of chronic infection. Varicella zoster virus (VZV) that establishes latency during childhood can escape control mechanisms, in particular with increasing age. We examined the TCR diversity of VZV-reactive CD4 T cells in individuals older than 50 years by studying three identical twin pairs and three unrelated individuals before and after vaccination with live attenuated VZV. Although all individuals had a small number of dominant T cell clones, the breadth of the VZV-specific repertoire differed markedly. A genetic influence was seen for the sharing of individual TCR sequences from antigen-reactive cells but not for repertoire richness or the selection of dominant clones. VZV vaccination favored the expansion of infrequent VZV antigen–reactive TCRs, including those from naïve T cells with lesser boosting of dominant T cell clones. Thus, vaccination does not reinforce the in vivo selection that occurred during chronic infection but leads to a diversification of the VZV-reactive T cell repertoire. However, a single-booster immunization seems insufficient to establish new clonal dominance. Our results suggest that repertoire analysis of antigen-specific TCRs can be an important readout to assess whether a vaccination was able to generate memory cells in clonal sizes that are necessary for immune protection.


2020 ◽  
Vol 6 (27) ◽  
pp. eaaz7809 ◽  
Author(s):  
Jan A. Rath ◽  
Gagan Bajwa ◽  
Benoit Carreres ◽  
Elisabeth Hoyer ◽  
Isabelle Gruber ◽  
...  

Transgenic coexpression of a class I–restricted tumor antigen–specific T cell receptor (TCR) and CD8αβ (TCR8) redirects antigen specificity of CD4+ T cells. Reinforcement of biophysical properties and early TCR signaling explain how redirected CD4+ T cells recognize target cells, but the transcriptional basis for their acquired antitumor function remains elusive. We, therefore, interrogated redirected human CD4+ and CD8+ T cells by single-cell RNA sequencing and characterized them experimentally in bulk and single-cell assays and a mouse xenograft model. TCR8 expression enhanced CD8+ T cell function and preserved less differentiated CD4+ and CD8+ T cells after tumor challenge. TCR8+CD4+ T cells were most potent by activating multiple transcriptional programs associated with enhanced antitumor function. We found sustained activation of cytotoxicity, costimulation, oxidative phosphorylation– and proliferation-related genes, and simultaneously reduced differentiation and exhaustion. Our study identifies molecular features of TCR8 expression that can guide the development of enhanced immunotherapies.


1995 ◽  
Vol 181 (3) ◽  
pp. 845-855 ◽  
Author(s):  
A H Shankar ◽  
R G Titus

In experimental murine cutaneous leishmaniasis caused by Leishmania major (Lm), the cellular determinants governing development of protective or exacerbative T cells are not well understood. We, therefore, attempted to determine the influence of T cell and non-T cell compartments on disease outcome. To this end, T cell chimeric mice were constructed using adult thymectomized lethally irradiated, bone marrow-reconstituted (ATXBM) animals of genetically resistant, C57BL/6, or susceptible, BALB/c, backgrounds. These hosts were engrafted with naive T cell populations from H-2-congenic susceptible, BALB.B6-H-2b, or resistant, C57BL/6.C-H-2d, animals, respectively. Chimeric mice were then infected with Lm, and disease outcome was monitored. BALB/c T cell chimeric mice, BALB/c ATXBM hosts given naive C57BL/6.C-H-2d T cells, resolved their infections as indicated by reductions in both lesion size and parasite numbers. Furthermore, the mice developed typical Th1 (interferon[IFN]-gamma hiinterleukin[IL]-4lo) cytokine patterns. In contrast, both sham chimeric, BALB/c ATXBM hosts given naive BALB/c T cells, and control irradiated euthymic mice succumbed to infection, producing Th2 profiles (IFN-gamma loIL-4hiIL-10hi). C57BL/6 T cell chimeras, C57BL/6 ATXBM hosts given naive BALB.B6-H-2b T cells, resolved their infections as did C57BL/6 sham chimeras and euthymic controls. Interestingly, whereas C57BL/6 control animals produced Th1 cytokines, chimeric animals progressed from Th0 (IFN-gamma hiIL-4hiIL-10hi) to Th2 (IFN-gamma loIL-4hiIL-10hi) cytokine profiles as cure ensued. Both reconstitution and chimeric status of all mice were confirmed by flow cytometry. In addition, T cell receptor V beta usage of Lm-specific blasts was determined. In all cases, V beta use was multiclonal, involving primarily V beta 2, 4, 6, 8.1, 8.2, 8.3, 10, and 14, with relative V beta frequencies differing between H-2b and H-2d animals. Most importantly, however, these differences did not segregate between cure and noncure outcomes. These findings indicate that: (a) genetic traits determining cure in Lm infection can direct disease outcome from both T cell and non-T cell compartments; (b) the presence of the curing genotype in only one compartment is sufficient to confer cure; (c) curing genotype T cells autonomously assume a Th1 cytokine profile-mediating cure; (d) noncuring genotype T cells can mediate cure in a curing environment, despite the onset of Th2 cytokine production; and lastly, (e) antigen specificity of responding T cells, as assessed by V beta T cell receptor diversity, is not a critical determinant of disease outcome.


Blood ◽  
2009 ◽  
Vol 114 (11) ◽  
pp. 2244-2253 ◽  
Author(s):  
Michael Rist ◽  
Corey Smith ◽  
Melissa J. Bell ◽  
Scott R. Burrows ◽  
Rajiv Khanna

Abstract The ability of CD8+ T cells to engage a diverse range of peptide–major histocompatibility complex (MHC) complexes can also lead to cross-recognition of self and nonself peptide-MHC complexes and thus directly contribute toward allograft rejection or autoimmunity. Here we present a novel form of cross-recognition by herpes virus–specific CD8+ cytotoxic T cells that challenges the current paradigm of self/non-self recognition. Functional characterization of a human leukocyte antigen (HLA) Cw*0602-restricted cytomegalovirus-specific CD8+ T-cell response revealed an unusual dual specificity toward a pp65 epitope and the alloantigen HLA DR4. This cross-recognition of HLA DR4 alloantigen was critically dependent on the coexpression of HLA DM and was preferentially directed toward the B-cell lineage. Furthermore, allostimulation of peripheral blood lymphocytes with HLA DRB*0401-expressing cells rapidly expanded CD8+ T cells, which recognized the pp65 epitope in the context of HLA Cw*0602. T-cell repertoire analysis revealed 2 dominant populations expressing T-cell receptor beta variable (TRBV)4-3 or TRBV13, with cross-reactivity exclusively mediated by the TRBV13+ clonotypes. More importantly, cross-reactive TRBV13+ clonotypes displayed markedly lower T-cell receptor binding affinity and a distinct pattern of peptide recognition, presumably mimicking a structure presented on the HLA DR4 allotype. These results illustrate a novel mechanism whereby virus-specific CD8+ T cells can cross-recognize HLA class II molecules and may contribute toward allograft rejection and/or autoimmunity.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3313-3313
Author(s):  
J. Joseph Melenhorst ◽  
Josette Zeilah ◽  
Edgardo Sosa ◽  
Dean Follmann ◽  
Nancy F. Hensel ◽  
...  

Abstract Human T cell development occurs in two waves of development and proliferation: first, early T cells expressing the TCRb chain but not the α-chain are selected for functional TCRβ protein independent of HLA recognition, a process called β-selection; second, thymocytes expressing both the α- and β-TCR are selected for intermediate affinity for self-MHC/ self-peptide complex. This latter process is referred to as positive selection. We sought to determine whether the peripheral TCRVβ frequencies in the naïve T cell repertoire start off at a fixed rank order with minimal skewing as would be expected from a predominantly β-selected repertoire. A total of 22 TCRVβ proteins was quantitated by flow cytometry in a group of 20 unselected umbilical cord blood (UCB) samples (a kind gift from Dr. P. Rubinstein, NY Blood Center, NY), consisting of >80% naïve T cells as defined by CD27+CD45RA+ staining in CD4+ and CD8+ cells. A common rank order of TCRVβ protein frequencies was found in both CD4 and CD8 T cell subsets (figure 1). Median TCRVβ frequencies in CD4 and in CD8 cells of UCB were statistically not significantly different from the frequencies in adult donor CD4 and CD8 cells (Wilcoxon signed rank test; p > 0.2). Furthermore, the percentages of CD4 cells expressing a particular Vβ correlated significantly in CD8 cells (figure 2) with some Vβ proteins being predominantly expressed by either CD4 (Vβ2, Vβ5.1) or CD8 (Vβ14, Vβ7) cells. Our data therefore conform to the prediction that the TCRVβ frequencies are dominantly shaped by β-selection, and not by interactions of the αβTCR/ co-receptor with MHC/ antigen complexes during thymic selection. Figure 1. TCRBV in UCB CD4+ (top) and CD8+ (bottom) T cells Figure 1. TCRBV in UCB CD4+ (top) and CD8+ (bottom) T cells Figure 2. Comparison of TCRBV protein expression frequencies in CD4 and CD8 cells of UCB Figure 2. Comparison of TCRBV protein expression frequencies in CD4 and CD8 cells of UCB


Sign in / Sign up

Export Citation Format

Share Document