The blackgrass genome reveals patterns of divergent evolution of non-target site resistance to herbicides.

2021 ◽  
Author(s):  
Lichun Cai ◽  
David Comont ◽  
Dana R MacGregor ◽  
Claudia Lowe ◽  
Roland Beffa ◽  
...  

Globally, weedy plants result in more crop yield loss than plant pathogens and insect pests combined. Much of the success of weeds rests with their ability to rapidly adapt in the face of human-mediated environmental management and change. The evolution of resistance to herbicides is an emblematic example of this rapid adaptation. Here, we focus on Alopecurus myosuroides (blackgrass), the most impactful agricultural weed in Europe. To gain insights into the evolutionary history and genomic mechanisms underlying adaptation in blackgrass, we assembled and annotated its large, complex genome. We show that non-target site herbicide resistance is oligogenic and likely evolves from standing genetic variation. We present evidence for divergent selection of resistance at the level of the genome in wild, evolved populations, though at the transcriptional level, resistance mechanisms are underpinned by similar patterns of up-regulation of stress- and defence-responsive gene families. These gene families are expanded in the blackgrass genome, suggesting that the large, duplicated, and dynamic genome plays a role in enabling rapid adaptation in blackgrass. These observations have wide significance for understanding rapid plant adaptation in novel stressful environments.

2021 ◽  
Author(s):  
Emma Bailey ◽  
Linda Field ◽  
Christopher Rawlings ◽  
Rob King ◽  
Fady Mohareb ◽  
...  

Abstract Background: The pirate bug, Orius laevigatus, is a highly effective beneficial predator of crop pests including aphids, spider mites and thrips in integrated pest management (IPM) programmes. No genomic information is currently available for O. laevigatus, as is the case for the majority of beneficial predators which feed on crop pests. In contrast, genomic information for crop pests is far more readily available. The lack of publicly available genomes for beneficial predators to date has limited our ability to perform comparative analyses of genes encoding potential insecticide resistance mechanisms between crop pests and their predators. These mechanisms include several gene/protein families including cytochrome P450s (P450s), ATP binding cassette transporters (ABCs), glutathione S-transferases (GSTs), UDP-glucosyltransferases (UGTs) and carboxyl/cholinesterases (CCEs).Methods and findings: In this study, a high-quality scaffold level de novo genome assembly for O. laevigatus has been generated using a hybrid approach with PacBio long-read and Illumina short-read data. The final assembly achieved a scaffold N50 of 125,649bp and a total genome size of 150.98Mb. The genome assembly achieved a level of completeness of 93.6% using a set of 1,658 core insect genes present as full-length genes. The assembly was annotated with 15,102 protein-coding genes - 87% of which were assigned a putative function - and the resultant gene set achieved a completeness of 84.5%. Comparative analyses revealed gene expansions of sigma class GSTs and CYP3 P450s. Conversely the UGT gene family showed limited expansion. Differences were seen in the distributions of resistance-associated gene families at the subfamily level between O. laevigatus and some of its targeted crop pests. A target site mutation in ryanodine receptors (I4790M, PxRyR) which has strong links to diamide resistance in crop pests and had previously only been identified in lepidopteran species was found to also be present in hemipteran species, including O. laevigatus. Conclusion and significance: This assembly is the first published genome for the Anthocoridae family and will serve as a useful resource for further research into target-site selectivity issues and potential resistance mechanisms in beneficial predators. Furthermore, the expansion of gene families often linked to insecticide resistance may be an indicator of the capacity of this predator to detoxify selective insecticides. These findings could be exploited by targeted pesticide screens and functional studies to increase effectiveness of IPM strategies, which aim to increase crop yields by effectively controlling pests in a sustainable and environmentally-friendly manner, without impacting beneficial predator populations.


2005 ◽  
Vol 75 (4) ◽  
pp. 17-23 ◽  
Author(s):  
L.M. Hall ◽  
F.J. Tardif ◽  
S.B. Powles

Alopecurus myosuroides and Lolium rigidum have developed resistance to herbicides with several modes of action in many herbicide classes. A. myosuroides biotype Peldon A1 from England exhibits non-target site cross resistance to substituted urea and aryloxyphenoxypropionate herbicides (APP) due to enhanced metabolism. L. rigidum biotype SLR 31 from Australia has multiple resistance mechanisms, including both non-target site cross resistance and target site cross resistance. The majority of the SLR 31 population has enhanced metabolism of chlorsulfuron and diclofop-methyl and a mechanism correlated with altered plasma membrane response, which correlates with resistance to some APP and cyclohexanedione (CHD) herbicides. A small proportion of the population also has target site cross resistance to APP and CHD herbicides. While A myosuroides and L. rigidum share common biological elements, they are not unique. Non-target site cross resistance and multiple herbicide resistance is predicted to develop in other weed species. The repercussions of cross and multiple resistance warrant proactive measures to prevent or delay onset.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Emma Bailey ◽  
Linda Field ◽  
Christopher Rawlings ◽  
Rob King ◽  
Fady Mohareb ◽  
...  

Abstract Background Orius laevigatus, a minute pirate bug, is a highly effective beneficial predator of crop pests including aphids, spider mites and thrips in integrated pest management (IPM) programmes. No genomic information is currently available for O. laevigatus, as is the case for the majority of beneficial predators which feed on crop pests. In contrast, genomic information for crop pests is far more readily available. The lack of publicly available genomes for beneficial predators to date has limited our ability to perform comparative analyses of genes encoding potential insecticide resistance mechanisms between crop pests and their predators. These mechanisms include several gene/protein families including cytochrome P450s (P450s), ATP binding cassette transporters (ABCs), glutathione S-transferases (GSTs), UDP-glucosyltransferases (UGTs) and carboxyl/cholinesterases (CCEs). Methods and findings In this study, a high-quality scaffold level de novo genome assembly for O. laevigatus has been generated using a hybrid approach with PacBio long-read and Illumina short-read data. The final assembly achieved a scaffold N50 of 125,649 bp and a total genome size of 150.98 Mb. The genome assembly achieved a level of completeness of 93.6% using a set of 1658 core insect genes present as full-length genes. Genome annotation identified 15,102 protein-coding genes - 87% of which were assigned a putative function. Comparative analyses revealed gene expansions of sigma class GSTs and CYP3 P450s. Conversely the UGT gene family showed limited expansion. Differences were seen in the distributions of resistance-associated gene families at the subfamily level between O. laevigatus and some of its targeted crop pests. A target site mutation in ryanodine receptors (I4790M, PxRyR) which has strong links to diamide resistance in crop pests and had previously only been identified in lepidopteran species was found to also be present in hemipteran species, including O. laevigatus. Conclusion and significance This assembly is the first published genome for the Anthocoridae family and will serve as a useful resource for further research into target-site selectivity issues and potential resistance mechanisms in beneficial predators. Furthermore, the expansion of gene families often linked to insecticide resistance may be an indicator of the capacity of this predator to detoxify selective insecticides. These findings could be exploited by targeted pesticide screens and functional studies to increase effectiveness of IPM strategies, which aim to increase crop yields by sustainably, environmentally-friendly and effectively control pests without impacting beneficial predator populations.


2020 ◽  
Vol 31 (4) ◽  
pp. 162-168
Author(s):  
Carlos A. G. Rigon ◽  
Todd A. Gaines ◽  
Anita Küpper ◽  
Franck E. Dayan

Evolution of resistance to pesticides is a problem challenging the sustainability of global food production. Resistance to herbicides is driven by the intense selection pressure imparted by synthetic herbicides on which we rely to manage weeds. Target-site resistance (TSR) mechanisms involve changes to the herbicide target protein and provide resistance only to herbicides within a single mechanism of action. Non-target site resistance (NTSR) mechanisms reduce the quantity of herbicide reaching the target site and/or modify the herbicide. NTSR mechanisms include reduced absorption and/or translocation, increased sequestration, and enhanced metabolic degradation. Of these diverse mechanisms contributing to NTSR, metabolism-based herbicide resistance represents a major threat because it can impart resistance to herbicides from varied chemical classes across any number of mechanisms of action.


2021 ◽  
Vol 7 (2) ◽  
pp. 109
Author(s):  
Viridiana Morales-Sánchez ◽  
Carmen E. Díaz ◽  
Elena Trujillo ◽  
Sonia A. Olmeda ◽  
Felix Valcarcel ◽  
...  

In the current study, an ethyl acetate extract from the endophytic fungus Aspergillus sp. SPH2 isolated from the stem parts of the endemic plant Bethencourtia palmensis was screened for its biocontrol properties against plant pathogens (Fusarium moniliforme, Alternaria alternata, and Botrytis cinerea), insect pests (Spodoptera littoralis, Myzus persicae, Rhopalosiphum padi), plant parasites (Meloidogyne javanica), and ticks (Hyalomma lusitanicum). SPH2 gave extracts with strong fungicidal and ixodicidal effects at different fermentation times. The bioguided isolation of these extracts gave compounds 1–3. Mellein (1) showed strong ixodicidal effects and was also fungicidal. This is the first report on the ixodicidal effects of 1. Neoaspergillic acid (2) showed potent antifungal effects. Compound 2 appeared during the exponential phase of the fungal growth while neohydroxyaspergillic acid (3) appeared during the stationary phase, suggesting that 2 is the biosynthetic precursor of 3. The mycotoxin ochratoxin A was not detected under the fermentation conditions used in this work. Therefore, SPH2 could be a potential biotechnological tool for the production of ixodicidal extracts rich in mellein.


Sign in / Sign up

Export Citation Format

Share Document