Computational analysis of the effect of SARS-CoV-2 variant Omicron Spike protein mutations on dynamics, ACE2 binding and propensity for immune escape

2021 ◽  
Author(s):  
Natalia Teruel ◽  
Matthew Crown ◽  
Matthew Bashton ◽  
Rafael Najmanovich

The recently reported Omicron (B.1.1.529) SARS-CoV-2 variant has a large number of mutations in the Spike (S) protein compared to previous variants. Here we evaluate the potential effect of Omicron S mutations on S protein dynamics and ACE2 binding as contributing factors to infectivity as well as propensity for immune escape. We define a consensus set of mutations from 77 sequences assigned as Omicron in GISAID as of November 25. We create structural models of the Omicron S protein in the open and closed states, as part of a complex with ACE2 and for each of 77 complexes of S bound to different antibodies with known structures. We have previously utilized Dynamical Signatures (DS) and the Vibrational Entropy Score (VDS) to evaluate the propensity of S variants to favour the open state. Here, we introduce the Binding Influence Score (BIS) to evaluate the influence of mutations on binding affinity based on the net gain or loss of interactions within the protein-protein interface. BIS shows excellent correlation with experimental data (Pearson correlation coefficient of 0.87) on individual mutations in the ACE2 interface for the Alpha, Beta, Gamma, Delta and Omicron variants combined. On the one hand, the DS of Omicron highly favours a more rigid open state and a more flexible closed state with the largest VDS of all variants to date, suggesting a large increase in the chances to interact with ACE2. On the other hand, the BIS shows that apart from N501Y, all other mutations in the interface reduce ACE2 binding affinity. VDS and BIS show opposing effects on the overall effectiveness of Omicron mutations to promote binding to ACE2 and therefore initiate infection. To evaluate the propensity for immune escape we calculated the net change of favourable and unfavourable interactions within each S-antibody interface. The net change of interactions shows a positive score (a net increase of favourable interactions and decrease of unfavourable ones) for 41 out of 77 antibodies, a nil score for 15 and a negative score for 21 antibodies. Therefore, in only 28% of S-antibody complexes (21/77) we predict some level of immune escape due to a weakening of the interactions with Omicron S. Considering that most antibody epitopes and the mutations are within the S-ACE2 interface our results suggest that mutations within the RBD of Omicron may give rise to only partial immune escape, which comes at the expense of reduced ACE2 binding affinity. However, this reduced ACE2 affinity appears to have been offset by increasing the occupancy of the open state of the Spike protein.

Author(s):  
Leyun Wu ◽  
Cheng Peng ◽  
Zhijian Xu ◽  
weiliang zhu

Vaccines and antibody therapeutic are needed to fight the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has spread since 2020. Experimental studies have shown that the E484K variant may escape the neutralization of antibodies. To explore the potential impact of E484K mutation on the antibody binding affinity, we calculated the binding free energy of 28 antibodies to the wild type and K484 mutant of the spike protein of SARS-CoV-2. We found that 71% of the antibodies show lower binding affinity to the E484K mutant, indicating the highly possible immune escape risk of the mutated virus. Further analysis revealed that the other mutations, e.g. F490 and V483, are also likely to cause immune escape.


2021 ◽  
Author(s):  
Leyun Wu ◽  
Cheng Peng ◽  
Zhijian Xu ◽  
weiliang zhu

Vaccines and antibody therapeutic are needed to fight the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has spread since 2020. Experimental studies have shown that the E484K variant may escape the neutralization of antibodies. To explore the potential impact of E484K mutation on the antibody binding affinity, we calculated the binding free energy of 28 antibodies to the wild type and K484 mutant of the spike protein of SARS-CoV-2. We found that 71% of the antibodies show lower binding affinity to the E484K mutant, indicating the highly possible immune escape risk of the mutated virus. Further analysis revealed that the other mutations, e.g. F490 and V483, are also likely to cause immune escape.


2021 ◽  
Author(s):  
Saeedeh Mohammadi ◽  
Esmail Doustkhah ◽  
Nader Sakhaee ◽  
Ayoub Esmailpour ◽  
Mohammad Esmailpour

Abstract Protein products of SARS-CoV-2 spike (S) coding gene sequence, were all analyzed and compared to other SARS-CoV S proteins to elucidate structural similarities of spike proteins. A homology modeling of SARS-CoV-2 S protein was obtained and used in molecular docking studies to find binding affinities of spike protein for angiotensin-converting enzyme 2 (ACE2). The two most important binding sites of S protein, namely, RBD and CTD, critically responsible for binding interactions, were identified. Finally, binding affinity of RBD and CTD domains of S protein with narcotic analgesics are studied. Moreover, interactions of ACE2 receptor- S protein with narcotic compounds when mixed with small molecule adjuvants to improve the immune response and increase the efficacy of potential vaccines, were taken into consideration. In-silico results suggest that the combination of narcotine hemiacetal with mannide monooleate shows a stronger binding affinity with CTD, while carprofen-muramyl dipeptide and squalene have stronger binding affinities for the RBD portion of S protein. Thus, a suitable combination of these narcotic is proposed to yield potent site-blocking efficacy for ACE2 receptor against SARS-CoV-2 spike proteins.


2021 ◽  
Author(s):  
Yen-Pang Hsu ◽  
Debopreeti Mukherjee ◽  
Vladimir Shchurik ◽  
Alexey Makarov ◽  
Benjamin F. Mann

AbstractGlycans of the SARS-CoV-2 spike protein are speculated to play functional roles in the infection processes as they extensively cover the protein surface and are highly conserved across the variants. To date, the spike protein has become the principal target for vaccine and therapeutic development while the exact effects of its glycosylation remain elusive. Experimental reports have described the heterogeneity of the spike protein glycosylation profile. Subsequent molecular simulation studies provided a knowledge basis of the glycan functions. However, there are no studies to date on the role of discrete glycoforms on the spike protein pathobiology. Building an understanding of its role in SARS-CoV-2 is important as we continue to develop effective medicines and vaccines to combat the disease. Herein, we used designed combinations of glycoengineering enzymes to simplify and control the glycosylation profile of the spike protein receptor-binding domain (RBD). Measurements of the receptor binding affinity revealed the regulatory effects of the RBD glycans. Remarkably, opposite effects were observed from differently remodeled glycans, which presents a potential strategy for modulating the spike protein behaviors through glycoengineering. Moreover, we found that the reported anti-SARS-CoV-(2) antibody, S309, neutralizes the impact of different RBD glycoforms on the receptor binding affinity. Overall, this work reports the regulatory roles that glycosylation plays in the interaction between the viral spike protein and host receptor, providing new insights into the nature of SARS-CoV-2. Beyond this study, enzymatic remodeling of glycosylation offers the opportunity to understand the fundamental role of specific glycoforms on glycoconjugates across molecular biology.Covert art LegendsThe glycosylation of the SARS-CoV-2 spike protein receptor-binding domain has regulatory effects on the receptor binding affinity. Sialylation or not determines the “stabilizing” or “destabilizing” effect of the glycans. (Protein structure model is adapted from Protein Data Bank: 6moj. The original model does not contain the glycan structure.)SignificanceGlycans extensively cover the surface of SARS-CoV-2 spike (S) protein but the relationships between the glycan structures and the protein pathological behaviors remain elusive. Herein, we simplified and harmonized the glycan structures in the S protein receptor-binding domain and reported their regulatory roles in human receptor interaction. Opposite regulatory effects were observed and were determined by discrete glycan structures, which can be neutralized by the reported S309 antibody binding to the S protein. This report provides new insight into the mechanism of SARS-CoV-2 S protein infection as well as S309 neutralization.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2295
Author(s):  
Mohd Imran Khan ◽  
Mohammad Hassan Baig ◽  
Tanmoy Mondal ◽  
Mohammed Alorabi ◽  
Tanuj Sharma ◽  
...  

The recent emergence of novel SARS-CoV-2 variants has threatened the efforts to contain the COVID-19 pandemic. The emergence of these “variants of concern” has increased viral transmissibility or immune escape and has supplanted the ancestral strains. The novel variants harbored by the B.1.617 lineage (Kappa and Delta) carry mutations within the receptor-binding domain of spike (S) protein (L452R + E484Q and L452R + T478K), the region binding to the host receptor. The double mutations carried by these novel variants are primarily responsible for an upsurge number of COVID-19 cases in India. In this study, we thoroughly investigated the impact of these double mutations on the binding capability to the human host receptor. We performed several structural analyses and found that the studied double mutations increase the binding affinity of the spike protein to the human host receptor (ACE2). Furthermore, our study showed that these double mutants might be a dominant contributor enhancing the receptor-binding affinity of SARS-CoV-2 and consequently making it more stable. We also investigated the impact of these mutations on the binding affinity of two monoclonal antibodies (Abs) (2-15 and LY-CoV555) and found that the presence of the double mutations also hinders its binding with the studied Abs. The principal component analysis, free energy landscape, intermolecular interaction, and other investigations provided a deeper structural insight to better understand the molecular mechanism responsible for increased viral transmissibility of these variants.


2021 ◽  
Author(s):  
Prashant Ranjan ◽  
Neha ◽  
Chandra Devi ◽  
Garima Jain ◽  
Chandana Basu Mallick ◽  
...  

Abstract The existing panels of COVID-19 vaccines are based on the spike protein of earlier SARS-CoV-2 strain that emerged in Wuhan, China. However, the evolving nature of SARS-CoV-2 has resulted in emergence of new variants, thereby, posing a greater challenge in the management of the disease. India faced a deadlier second wave of infections very recently and genomic surveillance revealed that B.1.617 variant and its sub lineages are responsible for majority of the cases. These are highly infectious and possibly more lethal and therefore labelled as variants of concern by WHO. Hence, it’s crucial to determine if the current vaccines available can be effective against these variants. To address this, we performed molecular dynamics (MD) simulation on B.1.617 along with K417G variants and other RBD variants. We studied structural alteration of the spike protein and factors affecting antibody neutralization and immune escape. We found in seven of the 12 variants studied, there was a structural alteration in RBD region further affecting its stability and function. Docking analysis of RBD variants and wild type strain demonstrated increase in binding affinity with ACE2 (angiotensin 2 altered enzymes) receptor in these variants. Molecular interaction with CR3022 antibody revealed that binding affinity was less in comparison to wild type, with B.1.617 showing the least binding affinity. These findings from the extensive simulations provides novel mechanistic insights on the conformational dynamics and improves our understanding of the enhanced properties of these variants in terms of infectivity, transmissibility, neutralization potential, virulence and host-viral replication fitness.


2021 ◽  
Vol 1 ◽  
Author(s):  
Sridevi Krishnan ◽  
Giri P. Krishnan

Background: The N-glycan structure and composition of the spike (S) protein of SARS-CoV-2 are pertinent to vaccine development and efficacy.Methods: We reconstructed the glycosylation network based on previously published mass spectrometry data using GNAT, a glycosylation network analysis tool. Our compilation of the network tool had 26 glycosyltransferase and glucosidase enzymes and could infer the pathway of glycosylation machinery based on glycans in the virus spike protein. Once the glycan biosynthesis pathway was generated, we simulated the effect of blocking specific enzymes—swainsonine or deoxynojirimycin for blocking mannosidase-II and indolizidine for blocking alpha-1,6-fucosyltransferase—to see how they would affect the biosynthesis network and the glycans that were synthesized.Results: The N-glycan biosynthesis network of SARS-CoV-2 spike protein shows an elaborate enzymatic pathway with several intermediate glycans, along with the ones identified by mass spectrometric studies. Of the 26 enzymes, the following were involved—Man-Ia, MGAT1, MGAT2, MGAT4, MGAT5, B3GalT, B4GalT, Man-II, SiaT, ST3GalI, ST3GalVI, and FucT8. Blocking specific enzymes resulted in a substantially modified glycan profile of SARS-CoV-2.Conclusion: Variations in the final N-glycan profile of the virus, given its site-specific microheterogeneity, are factors in the host response to the infection, vaccines, and antibodies. Heterogeneity in the N-glycan profile of the spike (S) protein and its potential effect on vaccine efficacy or adverse reactions to the vaccines remain unexplored. Here, we provide all the resources we generated—the glycans in the glycoCT xml format and the biosynthesis network for future work.


2021 ◽  
Author(s):  
Paola Cristina Resende ◽  
Felipe Gomes Naveca ◽  
Roberto Dias Lins ◽  
Filipe Zimmer Dezordi ◽  
Matheus V. F. Ferraz ◽  
...  

Mutations at both the receptor-binding domain (RBD) and the amino (N)-terminal domain (NTD) of the SARS-CoV-2 Spike (S) glycoprotein can alter its antigenicity and promote immune escape. We identified that SARS-CoV-2 lineages circulating in Brazil with mutations of concern in the RBD independently acquired convergent deletions and insertions in the NTD of the S protein, which altered the NTD antigenic-supersite and other predicted epitopes at this region. These findings support that the ongoing widespread transmission of SARS-CoV-2 in Brazil is generating new viral lineages that might be more resistant to neutralization than parental variants of concern.


2021 ◽  
Author(s):  
Saeedeh Mohammadi ◽  
Ayoub Esmailpour ◽  
Nader Sakhaee ◽  
Esmail Doustkhah

Abstract Protein products of SARS-CoV-2 spike (S) coding gene sequence, were all analyzed and compared to other SARS-CoV S proteins to elucidate structural similarities of spike proteins. A homology modeling of SARS-CoV-2 S protein was obtained and used in molecular docking studies to find binding affinities of spike protein for angiotensin-converting enzyme 2 (ACE2). The two most important binding sites of S protein, namely, RBD and CTD, critically responsible for binding interactions, were identified. Finally, binding affinity of RBD and CTD domains of S protein with narcotic analgesics are studied. Moreover, interactions of ACE2 receptor- S protein with narcotic compounds when mixed with small molecule adjuvants to improve the immune response and increase the efficacy of potential vaccines, were taken into consideration. In-silico results suggest that the combination of narcotine hemiacetal with mannide monooleate shows a stronger binding affinity with CTD, while carprofen-muramyl dipeptide and squalene have stronger binding affinities for the RBD portion of S protein. Thus, a suitable combination of these narcotic is proposed to yield potent site-blocking efficacy for ACE2 receptor against SARS-CoV-2 spike proteins.


2021 ◽  
Author(s):  
Mariana Soares da Silva ◽  
Juliana Schons Gularte ◽  
Meriane Demoliner ◽  
Alana Witt Hansen ◽  
Fágner Henrique Heldt ◽  
...  

Abstract Novel SARS-CoV-2 lineages are constantly reported worldwide, raising concerns about transmissibility, virulence, immune response and vaccine/antigenic escape. Variants of concern (VOCs), as B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta), caused epidemic outbreaks due their higher potential of transmissibility when compared with earlier waves of SARS-CoV-2 in 2019. B.1.1.28 lineage has been evolving in Brazil since February 2020 and originated P.1 (VOC), P.2 (VOI) and other P.Xs proposed as new variants. This lineage harbors specific defining mutations including two non-synonymous substitutions in the Spike (S) protein (D614G and V1176F). In this study, employing variant calling analysis on FASTQ reads and phylogenetic inference, we report a potentially new SARS-CoV-2 P.X variant. Variant calling mutational profile was investigated and presented additionally non-synonymous mutations when compared to B.1.1.28, including N234P and E471Q in S protein. Further studies are required to understand the spread of P.X variant and its potential effects on transmissibility and immune escape.


Sign in / Sign up

Export Citation Format

Share Document