scholarly journals Attention enhances category representations across the brain with strengthened residual correlations to ventral temporal cortex

2021 ◽  
Author(s):  
Arielle S Keller ◽  
Akshay V Jagadeesh ◽  
Lior Bugatus ◽  
Leanne M Williams ◽  
Kalanit Grill-Spector

How does attention enhance neural representations of goal-relevant stimuli while suppressing representations of ignored stimuli across regions of the brain? While prior studies have shown that attention enhances visual responses, we lack a cohesive understanding of how selective attention modulates visual representations across the brain. Here, we used functional magnetic resonance imaging (fMRI) while participants performed a selective attention task on superimposed stimuli from multiple categories and used a data-driven approach to test how attention affects both decodability of category information and residual correlations (after regressing out stimulus-driven variance) with category-selective regions of ventral temporal cortex (VTC). Our data reveal three main findings. First, when two objects are simultaneously viewed, the category of the attended object can be decoded more readily than the category of the ignored object, with the greatest attentional enhancements observed in occipital and temporal lobes. Second, after accounting for the response to the stimulus, the correlation in the residual brain activity between a cortical region and a category-selective region of VTC was elevated when that region's preferred category was attended vs. ignored, and more so in the right occipital, parietal, and frontal cortices. Third, we found that the stronger the residual correlations between a given region of cortex and VTC, the better visual category information could be decoded from that region. These findings suggest that heightened residual correlations by selective attention may reflect the sharing of information between sensory regions and higher-order cortical regions to provide attentional enhancement of goal-relevant information.

NeuroImage ◽  
2022 ◽  
pp. 118900
Author(s):  
Arielle S. Keller ◽  
Akshay Jagadeesh ◽  
Lior Bugatus ◽  
Leanne M. Williams ◽  
Kalanit Grill-Spector

2008 ◽  
Vol 100 (3) ◽  
pp. 1407-1419 ◽  
Author(s):  
Ethan M. Meyers ◽  
David J. Freedman ◽  
Gabriel Kreiman ◽  
Earl K. Miller ◽  
Tomaso Poggio

Most electrophysiology studies analyze the activity of each neuron separately. While such studies have given much insight into properties of the visual system, they have also potentially overlooked important aspects of information coded in changing patterns of activity that are distributed over larger populations of neurons. In this work, we apply a population decoding method to better estimate what information is available in neuronal ensembles and how this information is coded in dynamic patterns of neural activity in data recorded from inferior temporal cortex (ITC) and prefrontal cortex (PFC) as macaque monkeys engaged in a delayed match-to-category task. Analyses of activity patterns in ITC and PFC revealed that both areas contain “abstract” category information (i.e., category information that is not directly correlated with properties of the stimuli); however, in general, PFC has more task-relevant information, and ITC has more detailed visual information. Analyses examining how information coded in these areas show that almost all category information is available in a small fraction of the neurons in the population. Most remarkably, our results also show that category information is coded by a nonstationary pattern of activity that changes over the course of a trial with individual neurons containing information on much shorter time scales than the population as a whole.


2018 ◽  
Vol 30 (9) ◽  
pp. 1281-1297 ◽  
Author(s):  
Alexa Tompary ◽  
Naseem Al-Aidroos ◽  
Nicholas B. Turk-Browne

Top–down attention prioritizes the processing of goal-relevant information throughout visual cortex based on where that information is found in space and what it looks like. Whereas attentional goals often have both spatial and featural components, most research on the neural basis of attention has examined these components separately. Here we investigated how these attentional components are integrated by examining the attentional modulation of functional connectivity between visual areas with different selectivity. Specifically, we used fMRI to measure temporal correlations between spatially selective regions of early visual cortex and category-selective regions in ventral temporal cortex while participants performed a task that benefitted from both spatial and categorical attention. We found that categorical attention modulated the connectivity of category-selective areas, but only with retinotopic areas that coded for the spatially attended location. Similarly, spatial attention modulated the connectivity of retinotopic areas only with the areas coding for the attended category. This pattern of results suggests that attentional modulation of connectivity is driven both by spatial selection and featural biases. Combined with exploratory analyses of frontoparietal areas that track these changes in connectivity among visual areas, this study begins to shed light on how different components of attention are integrated in support of more complex behavioral goals.


Author(s):  
Rena Bayramova ◽  
Enrico Toffalini ◽  
Mario Bonato ◽  
Massimo Grassi

Abstract Can cognitive load enhance concentration on task-relevant information and help filter out distractors? Most of the prior research in the area of selective attention has focused on visual attention or cross-modal distraction and has yielded controversial results. Here, we studied whether working memory load can facilitate selective attention when both target and distractor stimuli are auditory. We used a letter n-back task with four levels of working memory load and two levels of distraction: congruent and incongruent distractors. This combination of updating and inhibition tasks allowed us to manipulate working memory load within the selective attention task. Participants sat in front of three loudspeakers and were asked to attend to the letter presented from the central loudspeaker while ignoring that presented from the flanking ones (spoken by a different person), which could be the same letter as the central one (congruent) or a different (incongruent) letter. Their task was to respond whether or not the central letter matched the letter presented n (0, 1, 2, or 3) trials back. Distraction was measured in terms of the difference in reaction time and accuracy on trials with incongruent versus congruent flankers. We found reduced interference from incongruent flankers in 2- and 3-back conditions compared to 0- and 1-back conditions, whereby higher working memory load almost negated the effect of incongruent flankers. These results suggest that high load on verbal working memory can facilitate inhibition of distractors in the auditory domain rather than make it more difficult as sometimes claimed.


2021 ◽  
Author(s):  
Yiyuan Zhang ◽  
Ke Zhou ◽  
Pinglei Bao ◽  
Jia Liu

To achieve the computational goal of rapidly recognizing miscellaneous objects in the environment despite large variations in their appearance, our mind represents objects in a high-dimensional object space to provide separable category information and enable the extraction of different kinds of information necessary for various levels of the visual processing. To implement this abstract and complex object space, the ventral temporal cortex (VTC) develops different object-selective regions with a certain topological organization as the physical substrate. However, the principle that governs the topological organization of object selectivities in the VTC remains unclear. Here, equipped with the wiring cost minimization principle constrained by the wiring length of neurons in the human temporal lobe, we constructed a hybrid self-organizing map (SOM) model as an artificial VTC (VTC-SOM) to explain how the abstract and complex object space is faithfully implemented in the brain. In two in silico experiments with the empirical brain imaging and single-unit data, our VTC-SOM predicted the topological structure of fine-scale functional regions (face-, object-, body-, and place-selective regions) and the boundary (i.e., middle Fusiform Sulcus) in large-scale abstract functional maps (animate vs. inanimate, real-word large-size vs. small-size, central vs. peripheral), with no significant loss in functionality (e.g., categorical selectivity, a hierarchy of view-invariant representations). These findings illustrated that the simple principle utilized in our model, rather than multiple hypotheses such as temporal associations, conceptual knowledge, and computational demands together, was apparently sufficient to determine the topological organization of object-selectivities in the VTC. In this way, the high-dimensional object space is implemented in a two-dimensional cortical surface of the brain faithfully.


2017 ◽  
Author(s):  
Alexa Tompary ◽  
Naseem Al-Aidroos ◽  
Nicholas B. Turk-Browne

AbstractTop-down attention prioritizes the processing of goal-relevant information throughout visual cortex, based on where that information is found in space and what it looks like. Whereas attentional goals often have both spatial and featural components, most research on the neural basis of attention has examined these components separately. This may reflect the fact that attention is typically studied in individual visual areas that preferentially code for either spatial locations or particular features. Here we investigated how these attentional components are integrated by examining the attentional modulation of functional connectivity between visual areas with different selectivity. Specifically, we used fMRI to measure temporal correlations between spatially-selective regions of early visual cortex and category-selective regions in ventral temporal cortex while participants performed a task that benefitted from both spatial and categorical attention. We found that categorical attention modulated the connectivity of category-selective areas, but only with retinotopic areas that coded for the spatially attended location. The reverse was not true, however, with spatial attention modulating the connectivity of retinotopic areas with category-selective areas coding for both attended and unattended features. This pattern of results suggests that attentional modulation of connectivity is dominated by spatial selection, which in turn gates featural biases. Combined with exploratory analyses of frontoparietal areas that track these changes in connectivity among visual areas, this study begins to shed light on how different components of attention are integrated in support of more complex behavioral goals.


2020 ◽  
Author(s):  
Iris I A Groen ◽  
Edward H Silson ◽  
David Pitcher ◽  
Chris I Baker

AbstractHuman visual cortex contains three scene-selective regions in the lateral, medial and ventral cortex, termed the occipital place area (OPA), medial place area (MPA) and parahippocampal place area (PPA). Using functional magnetic resonance imaging (fMRI), all three regions respond more strongly when viewing visual scenes compared with isolated objects or faces. To determine how these regions are functionally and causally connected, we applied transcranial magnetic stimulation to OPA and measured fMRI responses before and after stimulation, using a theta-burst paradigm (TBS). To test for stimulus category-selectivity, we presented a range of visual categories (scenes, buildings, objects, faces). To test for specificity of any effects to TBS of OPA we employed two control conditions: Sham, with no TBS stimulation, and an active TBS-control with TBS to a proximal face-selective cortical region (occipital face area, or OFA). We predicted that TBS to OPA (but not OFA) would lead to decreased responses to scenes and buildings (but not other categories) in other scene-selective cortical regions. Across both ROI and whole-volume analyses, we observed decreased responses to scenes in PPA as a result of TBS. However, these effects were neither category specific, with decreased responses to all stimulus categories, nor limited to scene-selective regions, with decreases also observed in face-selective fusiform face area (FFA). Furthermore, similar effects were observed with TBS to OFA, thus effects were not specific to the stimulation site in the lateral occipital cortex. Whilst these data are suggestive of a causal, but non-specific relationship between lateral occipital and ventral temporal cortex, we discuss several factors that could have underpinned this result, such as the differences between TBS and online TMS, the role of anatomical distance between stimulated regions and how TMS effects are operationalised. Furthermore, our findings highlight the importance of active control conditions in brain stimulation experiments to accurately assess functional and causal connectivity between specific brain regions.


2018 ◽  
Author(s):  
Yuri B. Saalmann ◽  
Ryan Ly ◽  
Mark A. Pinsk ◽  
Sabine Kastner

AbstractThe fronto-parietal attention network represents attentional priorities and provides feedback about these priorities to sensory cortical areas. Sustained spiking activity in the posterior parietal cortex (PPC) carries such prioritized information, but how this activity is sustained in the absence of feedforward sensory information, and how it is transmitted to the ventral visual cortical pathway, is unclear. We hypothesized that the higher-order thalamic nucleus, the pulvinar, which is connected with both the PPC and ventral visual cortical pathway, influences information transmission within and between these cortical regions. To test this, we simultaneously recorded from the pulvinar, lateral intraparietal area (LIP) and visual cortical area V4 in macaques performing a selective attention task. Here we show that LIP influenced V4 during the delay period of the attention task, and that the pulvinar regulated LIP-V4 information exchange. Pulvino-cortical effects were consistent with the pulvinar supporting sustained activity in LIP. Taken together, these results suggest that pulvinar regulation of cortical functional connectivity generalizes to dorsal and ventral visual cortical pathways. Further, the pulvinar’s role in sustaining parietal delay activity during selective attention implicates the pulvinar in other cognitive processes supported by such delay activity, including decision-making, categorization and oculomotor functions.Significance StatementA network of areas on the brain’s surface, in frontal and parietal cortex, allocate attention to behaviorally relevant information around us. Such areas in parietal cortex show sustained activity during maintained attention and transmit behaviorally relevant information to visual cortical areas to enhance sensory processing of attended objects. How this activity is sustained and how it is transmitted to visual areas supporting object perception is unclear. We show that a subcortical area, the pulvinar in the thalamus, helps sustain activity in the cortex and regulates the information transmitted between the fronto-parietal attention network and visual cortex. This suggests that the thalamus, classically considered as a simple relay for sensory information, contributes to higher-level cognitive functions.


1987 ◽  
Vol 9 (4) ◽  
pp. 326-345 ◽  
Author(s):  
Bruce Abernethy ◽  
David G. Russell

Two experiments are described comparing the temporal and spatial characteristics of the anticipatory cues used by expert (n=20) and novice (n=35) racquet sport players. In both experiments the perceptual display available in badminton was simulated using film, and display characteristics were selectively manipulated either by varying the duration of the stroke sequence that was visible (Experiment 1) or by selectively masking specific display features (Experiment 2). The subjects* task in all cases was to predict the landing position of the stroke they were viewing. It was found in Experiment 1 that experts were able to pick up more relevant information from earlier display cues than could novices, and this appeared in Experiment 2 to be due to their ability to extract advance information from the playing side arm, in addition to the racquet itself. These differences, it was concluded, were congruent with predictions that could be derived from traditional information-processing notions related to recognition of display redundancy. The roles of different anticipatory cue sources in the independent predictions of stroke speed and direction were also examined, and it was concluded that directional judgments were more dependent on cue specificity than were depth judgments.


2021 ◽  
Author(s):  
Hillary L Cansler ◽  
Estelle E in 't Zandt ◽  
Kaitlin S. Carlson ◽  
Waseh T Khan ◽  
Minghong Ma ◽  
...  

Sensory perception is profoundly shaped by attention. Attending to an odor strongly regulates if and how a smell is perceived – yet the brain systems involved in this process are unknown. Here we report integration of the medial prefrontal cortex (mPFC), a collection of brain regions integral to attention, with the olfactory system in the context of selective attention to odors. First, we used tracing methods to establish the tubular striatum (TuS, also known as the olfactory tubercle) as the primary olfactory region to receive direct mPFC input in rats. Next, we recorded local field potentials from the olfactory bulb (OB), mPFC, and TuS while rats completed an olfactory selective attention task. Gamma power and coupling of gamma oscillations with theta phase were consistently high as rats flexibly switched their attention to odors. Beta and theta synchrony between mPFC and olfactory regions were elevated as rats switched their attention to odors. Finally, we found that sniffing was consistent despite shifting attentional demands, suggesting that the mPFC-OB theta coherence is independent of changes in active sampling. Together, these findings begin to define an olfactory attention network wherein mPFC activity, as well as that within olfactory regions, are coordinated in manners based upon attentional states.


Sign in / Sign up

Export Citation Format

Share Document