scholarly journals Well-Lit: A programmable and customizable assistant for manual multi-well plate pipetting

2021 ◽  
Author(s):  
Rafael Gómez-Sjöberg ◽  
Joana P. Cabrera ◽  
Andrew Cote

A very large number of biology and biochemistry laboratory protocols require transferring liquid aliquots from individual containers into individual wells of a multi-well plate, from plates to individual containers, or from one plate to another. Doing this by hand without errors, such as skipping wells, placing two samples in the same well, or swapping sample locations, especially when using plates with 96 wells or more, is difficult and requires enormous operator focus and/or a tedious manual error checking system. We present here a device built to facilitate error-free pipetting of samples from individual barcoded tubes to a multi-well plate or between multi-well plates (both 96 and 384 wells are supported). The device is programmable, modular and easily customizable to accommodate plates with different form-factors, and different protocols. The main components are only a 12.3" touch screen, a small form-factor PC, and a barcode scanner, combined with custom-made parts can be easily fabricated with a laser cutter and a hobby-grade 3D printer. The total cost is between approximately US$550 and US$600, depending on the configuration.

2021 ◽  
Vol 11 (6) ◽  
pp. 2803
Author(s):  
Jae-Woo Kim ◽  
Dong-Seong Kim ◽  
Seung-Hwan Kim ◽  
Sang-Moon Shin

A quad, small form-factor pluggable 28 Gbps optical transceiver design scheme is proposed. It is capable of transmitting 50 Gbps of data up to a distance of 40 km using modulation signals with a level-four pulse-amplitude. The proposed scheme is designed using a combination of electro-absorption-modulated lasers, transmitter optical sub-assembly, low-cost positive-intrinsic-native photodiodes, and receiver optical sub-assembly to achieve standard performance and low cost. Moreover, the hardware and firmware design schemes to implement the optical transceiver are presented. The results confirm the effectiveness of the proposed scheme and the performance of the manufactured optical transceiver, thereby confirming its applicability to real industrial sites.


2016 ◽  
Vol 147 ◽  
pp. 186-190 ◽  
Author(s):  
Derek Nevins ◽  
Kasee Hildenbrand ◽  
Jeff Kensrud ◽  
Anita Vasavada ◽  
Lloyd Smith

Author(s):  
Derek Nevins ◽  
Kasee Hildenbrand ◽  
Jeff Kensrud ◽  
Anita Vasavada ◽  
Lloyd Smith

Head impact sensors are increasingly used to quantify the frequency and magnitude of head impacts in sports. A dearth of information exists regarding head impact in un-helmeted sport, despite the substantial number of concussions experienced in these sports. This study evaluated the performance of one small form factor head impact sensor in both laboratory and field environments. In laboratory tests, sensor performance was assessed using a Hybrid III headform and neck. The headform assembly was mounted on a low-friction sled and impacted with three sports balls over a range of velocities (10–31 m/s) at two locations and from three directions. Measures of linear and angular acceleration obtained from the small form factor wireless sensor were compared to measures of linear and angular acceleration obtained by wired sensors mounted at the headform center of mass. Accuracy of the sensor varied inversely with impact magnitude, with relative differences across test conditions ranging from 0.1% to 266.0% for peak linear acceleration and 4.7% to 94.6% for peak angular acceleration when compared to a wired reference system. In the field evaluation, eight male high school soccer players were instrumented with the head impact sensor in seven games. Video of the games was synchronized with sensor data and reviewed to determine the number of false positive and false negative head acceleration event classifications. Of the 98 events classified as valid by the sensor, 20.5% (20 impacts) did not result from contact with the ball, another player, the ground or player motion and were therefore considered false positives. Video review of events classified as invalid or spurious by the sensor found 77.8% (14 of 18 impacts) to be due to contact with the ball, another player or player motion and were considered false negatives.


Author(s):  
G. de Valicourt ◽  
C-M. Chang ◽  
J. H. Sinsky ◽  
Y. K. Chen ◽  
M. A. Mestre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document