scholarly journals Prefrontal cortical contributions to working memory loading, maintenance and recall are parsed by hippocampal-prefrontal oscillatory assembly dynamics

2021 ◽  
Author(s):  
Aleksander Peter Frederick Domanski ◽  
Michal T Kucewicz ◽  
Elenora Russo ◽  
Mark Tricklebank ◽  
Emma Robinson ◽  
...  

Working memory enables incorporation of recent experience into subsequent decision-making. This processing recruits both prefrontal cortex and hippocampus, where neurons encode task cues, rules and outcomes. However, precisely which information is carried when, and by which neurons, remains unclear. Using population decoding of activity in rat medial prefrontal cortex (mPFC) and dorsal hippocampal CA1, we confirm that mPFC populations lead in maintaining sample information across delays of an operant non-match to sample task, despite individual neurons firing only transiently. During sample encoding, distinct mPFC subpopulations joined distributed CA1-mPFC cell assemblies hallmarked by 4-5Hz rhythmic modulation; CA1-mPFC assemblies re-emerged during choice episodes, but were not 4-5Hz modulated. Delay-dependent errors arose when attenuated rhythmic assembly activity heralded collapse of sustained mPFC encoding; pharmacological disruption of CA1-mPFC assembly rhythmicity impaired task performance. Our results map component processes of memory-guided decisions onto heterogeneous CA1-mPFC subpopulations and the dynamics of physiologically distinct, distributed cell assemblies.

2018 ◽  
Vol 30 (7) ◽  
pp. 935-950 ◽  
Author(s):  
Zoran Tiganj ◽  
Jason A. Cromer ◽  
Jefferson E. Roy ◽  
Earl K. Miller ◽  
Marc W. Howard

Cognitive theories suggest that working memory maintains not only the identity of recently presented stimuli but also a sense of the elapsed time since the stimuli were presented. Previous studies of the neural underpinnings of working memory have focused on sustained firing, which can account for maintenance of the stimulus identity, but not for representation of the elapsed time. We analyzed single-unit recordings from the lateral prefrontal cortex of macaque monkeys during performance of a delayed match-to-category task. Each sample stimulus triggered a consistent sequence of neurons, with each neuron in the sequence firing during a circumscribed period. These sequences of neurons encoded both stimulus identity and elapsed time. The encoding of elapsed time became less precise as the sample stimulus receded into the past. These findings suggest that working memory includes a compressed timeline of what happened when, consistent with long-standing cognitive theories of human memory.


2005 ◽  
Vol 17 (11) ◽  
pp. 1728-1743 ◽  
Author(s):  
F. Gregory Ashby ◽  
Shawn W. Ell ◽  
Vivian V. Valentin ◽  
Michael B. Casale

Many studies suggest that the sustained activation underlying working memory (WM) maintenance is mediated by a distributed network that includes the prefrontal cortex and other structures (e.g., posterior parietal cortex, thalamus, globus pallidus, and the caudate nucleus). A computational model of WM, called FROST (short for FROntal-Striatal-Thalamic), is proposed in which the representation of items and spatial positions is encoded in the lateral prefrontal cortex. During delay intervals, activation in these prefrontal cells is sustained via parallel, prefrontal cortical-thalamic loops. Activation reverberates in these loops because prefrontal cortical excitation of the head of the caudate nucleus leads to disinhibition of the thalamus (via the globus pallidus). FROST successfully accounts for a wide variety of WM data, including single-cell recording data and human behavioral data.


2019 ◽  
Author(s):  
Sanjeev B. Khanna ◽  
Jonathan A. Scott ◽  
Matthew A. Smith

AbstractActive vision is a fundamental process by which primates gather information about the external world. Multiple brain regions have been studied in the context of simple active vision tasks in which a visual target’s appearance is temporally separated from saccade execution. Most neurons have tight spatial registration between visual and saccadic signals, and in areas such as prefrontal cortex (PFC) some neurons show persistent delay activity that links visual and motor epochs and has been proposed as a basis for spatial working memory. Many PFC neurons also show rich dynamics, which have been attributed to alternative working memory codes and the representation of other task variables. Our study investigated the transition between processing a visual stimulus and generating an eye movement in populations of PFC neurons in macaque monkeys performing a memory guided saccade task. We found that neurons in two subregions of PFC, the frontal eye fields (FEF) and area 8Ar, differed in their dynamics and spatial response profiles. These dynamics could be attributed largely to shifts in the spatial profile of visual and motor responses in individual neurons. This led to visual and motor codes for particular spatial locations that were instantiated by different mixtures of neurons, which could be important in PFC’s flexible role in multiple sensory, cognitive, and motor tasks.New and NoteworthyA central question in neuroscience is how the brain transitions from sensory representations to motor outputs. The prefrontal cortex contains neurons that have long been implicated as important in this transition and in working memory. We found evidence for rich and diverse tuning in these neurons, that was often spatially misaligned between visual and saccadic responses. This feature may play an important role in flexible working memory capabilities.


2019 ◽  
Author(s):  
Joachim Hass ◽  
Salva Ardid ◽  
Jason Sherfey ◽  
Nancy Kopell

AbstractPersistent activity, the maintenance of neural activation over short periods of time in cortical networks, is widely thought to underlie the cognitive function of working memory. A large body of modeling studies has reproduced this kind of activity using cell assemblies with strengthened synaptic connections. However, almost all of these studies have considered persistent activity within networks with homogeneous neurons and synapses, making it difficult to judge the validity of such model results for cortical dynamics, which is based on highly heterogeneous neurons. Here, we consider persistent activity in a detailed, strongly data-driven network model of the prefrontal cortex with heterogeneous neuron and synapse parameters. Surprisingly, persistent activity could not be reproduced in this model without incorporating further constraints. We identified three factors that prevent successful persistent activity: heterogeneity in the cell parameters of interneurons, heterogeneity in the parameters of short-term synaptic plasticity and heterogeneity in the synaptic weights. Our model predicts that persistent activity is recovered if the heterogeneity in the activity of individual interneurons is diminished, which could be achieved by a homeostatic plasticity mechanism. Such a plasticity scheme could also compensate the heterogeneities in the synaptic weights and short-term plasticity when applied to the inhibitory synapses. Cell assemblies shaped in this way may be potentially targeted by distinct inputs or become more responsive to specific tuning or spectral properties. Furthermore, the model predicts that a network that exhibits persistent activity is not able to dynamically produce intrinsic in vivo-like irregular activity at the same time, because heterogeneous synaptic connections are required for these dynamics. Thus, the background noise in such a network must either be produced by external input or constitutes an entirely different state of the network, which is brought about, e.g., by neuromodulation.Author summaryTo operate effectively in a constantly changing world, it is crucial to keep relevant information in mind for short periods of time. This ability, called working memory, is commonly assumed to rest on reverberating activity among members of cell assemblies. While effective in reproducing key results of working memory, most cell assembly models rest on major simplifications such as using the same parameters for all neurons and synapses, i.e., assuming homogeneity in these parameters. Here, we show that this homogeneity assumption is necessary for persistent activity to arise, specifically for inhibitory interneurons and synapses. Using a strongly data-driven network model of the prefrontal cortex, we show that the heterogeneities in the above parameters that are implied by in vitro studies prevent persistent activity. When homogeneity is imposed on inhibitory neurons and synapses, persistent activity is recovered. We propose that the homogeneity constraints can be implemented in the brain by means of homeostatic plasticity, a form of learning that keeps the activity of a network in a constant, homeostatic state. The model makes a number of predictions for biological networks, including a structural separation of networks responsible for generating persistent activity and spontaneous, noise-like activity.


2020 ◽  
Vol 124 (6) ◽  
pp. 1774-1791
Author(s):  
Sanjeev B. Khanna ◽  
Jonathan A. Scott ◽  
Matthew A. Smith

A central question in neuroscience is how the brain transitions from sensory representations to motor outputs. The prefrontal cortex contains neurons that have long been implicated as important in this transition and in working memory. We found evidence for rich and diverse tuning in these neurons, which was often spatially misaligned between visual and saccadic responses. This feature may play an important role in flexible working memory capabilities.


Author(s):  
Y Liu ◽  
SS McAfee ◽  
RV Sillitoe ◽  
DH Heck

ABSTRACTThe medial prefrontal cortex (mPFC) and dorsal hippocampal CA1 region (dCA1) in rodents show increased coherence of neuronal oscillations during decisions in learned spatial working memory (SWM) tasks and the coherence changes reflect decision outcome. However, how coherence is controlled is unknown. We found in mice that decision related gamma coherence modulation between the mPFC and dCA1 and normal SWM performance required an intact cerebellum. Optogenetic activation of the cerebellar lobulus simplex impaired decision-related mPFC-dCA1 coherence modulation and SWM performance. Our findings reveal a role for the cerebellum in the task-specific modulation of coherence between cerebral cortical areas as possible mechanism of cerebellar cognitive function.


Sign in / Sign up

Export Citation Format

Share Document