scholarly journals Elevation of cell-associated HIV-1 RNA transcripts in CSF CD4+ T cells, despite suppressive antiretroviral therapy, is linked to in vivo brain injury

Author(s):  
Kazuo Suzuki ◽  
John Zaunders ◽  
Thomas M Gates ◽  
Angelique Levert ◽  
Shannen Butterly ◽  
...  

Objective Despite effective antiretroviral therapy (ART), brain injury remains prevalent in people living with HIV-1 infection (PLHIV) possibly due to ART lacking direct inhibition of transcription with continued local production of viral transcripts and neurotoxic proteins, such as Tat, rather than cell-free whole virion toxicity. We quantified cell-associated (CA) HIV-1 RNA-transcripts in CSF and blood, in relation to proton Magnetic Resonance Spectroscopy (1H MRS) of major brain metabolites, in well characterised PLHIV. Methods RNA was extracted from cells in 16 paired samples of CSF and blood, from PLHIV on fully suppressive ART. HIV-1 CA-RNA copies were measured using the highly sensitive Double-R assay and normalized /million CD4+ T cells. 18-colour flow cytometry was used to count and analyse CD4+ T cells and monocytes in CSF and blood. The concentrations of major brain metabolites from 1H MRS in frontal white matter (FWM), posterior cingulate cortex (PCC), and caudate areas were measured. Brain injury in each voxel was defined using a composite score derived by principal component analysis. Results 14/16 CSF cell samples had quantifiable HIV-1 CA-RNA transcripts, at levels significantly higher than in their PBMCs (median 9,266 vs 185 copies /106 CD4+ T cells; p<0.0001). Higher levels of CSF transcripts were associated with greater brain injury in the FWM (Std beta=-0.73; p=0.007) and PCC (Std beta=-0.61; p=0.03). CSF cells were 91% memory T cells, equally CD4+ (median 3,605) cells and CD8+ T cells (3,632), but contained much fewer B cells (0.4 %), NK cells (2.0%) and monocytes (3.1%; 378 cells; >90% CD14+CD16+ phenotype). CXCR3+CD49d+integrin beta7-negative, CCR5+ CD4+ T cells were significantly enriched in CSF, compared with PBMC (p <0.001). Transcriptional activity in CSF cells was highly correlated with levels of transcriptional activity in CD4+ T cells in PBMC (r=0.76; p=0.002). In contrast, HIV-1 RNA in highly purified monocytes from PBMC was detected in only 6/16 samples. Conclusions Elevated HIV-1 transcripts in CSF cells were associated with in vivo brain injury, despite suppressive ART. The cellular source is most likely the predominant CXCR3+ CD49d+ integrin beta7- CCR5+ memory CD4+ T cells, not monocytes. Inhibitors of transcription to reduce local production of potentially neurotoxic proteins, should be developed.

2010 ◽  
Vol 207 (13) ◽  
pp. 2869-2881 ◽  
Author(s):  
Christof Geldmacher ◽  
Njabulo Ngwenyama ◽  
Alexandra Schuetz ◽  
Constantinos Petrovas ◽  
Klaus Reither ◽  
...  

HIV-1 infection results in the progressive loss of CD4 T cells. In this study, we address how different pathogen-specific CD4 T cells are affected by HIV infection and the cellular parameters involved. We found striking differences in the depletion rates between CD4 T cells to two common opportunistic pathogens, cytomegalovirus (CMV) and Mycobacterium tuberculosis (MTB). CMV-specific CD4 T cells persisted after HIV infection, whereas MTB-specific CD4 T cells were depleted rapidly. CMV-specific CD4 T cells expressed a mature phenotype and produced very little IL-2, but large amounts of MIP-1β. In contrast, MTB-specific CD4 T cells were less mature, and most produced IL-2 but not MIP-1β. Staphylococcal enterotoxin B–stimulated IL-2–producing cells were more susceptible to HIV infection in vitro than MIP-1β–producing cells. Moreover, IL-2 production was associated with expression of CD25, and neutralization of IL-2 completely abrogated productive HIV infection in vitro. HIV DNA was found to be most abundant in IL-2–producing cells, and least abundant in MIP-1β–producing MTB-specific CD4 T cells from HIV-infected subjects with active tuberculosis. These data support the hypothesis that differences in function affect the susceptibility of pathogen-specific CD4 T cells to HIV infection and depletion in vivo, providing a potential mechanism to explain the rapid loss of MTB-specific CD4 T cells after HIV infection.


2013 ◽  
Vol 9 (12) ◽  
pp. e1003812 ◽  
Author(s):  
Kei Sato ◽  
Naoko Misawa ◽  
Shingo Iwami ◽  
Yorifumi Satou ◽  
Masao Matsuoka ◽  
...  

Virology ◽  
2008 ◽  
Vol 381 (2) ◽  
pp. 161-167 ◽  
Author(s):  
Nithianandan Selliah ◽  
Mingce Zhang ◽  
Sara White ◽  
Philip Zoltick ◽  
Bassel E. Sawaya ◽  
...  

AIDS ◽  
2008 ◽  
Vol 22 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Gareth J Hughes ◽  
Alexandra Cochrane ◽  
Clifford Leen ◽  
Sheila Morris ◽  
Jeanne E Bell ◽  
...  
Keyword(s):  
T Cells ◽  

PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e86479 ◽  
Author(s):  
Yasuhiro Suzuki ◽  
Hiroyuki Gatanaga ◽  
Natsuo Tachikawa ◽  
Shinichi Oka

Virology ◽  
1999 ◽  
Vol 263 (1) ◽  
pp. 78-88 ◽  
Author(s):  
Caterina Lapenta ◽  
Stefano M. Santini ◽  
Enrico Proietti ◽  
Paola Rizza ◽  
Mariantonia Logozzi ◽  
...  

2000 ◽  
Vol 97 (3) ◽  
pp. 1269-1274 ◽  
Author(s):  
H. Blaak ◽  
A. B. van't Wout ◽  
M. Brouwer ◽  
B. Hooibrink ◽  
E. Hovenkamp ◽  
...  
Keyword(s):  
T Cells ◽  
T Cell ◽  

2008 ◽  
Vol 40 (2) ◽  
pp. 257
Author(s):  
Stephen E. Braun ◽  
Fay Eng Wong ◽  
Michelle Connole ◽  
Ran Taube ◽  
Akikazu Murakami ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Chynna M. Hendricks ◽  
Thaissa Cordeiro ◽  
Ana Paula Gomes ◽  
Mario Stevenson

HIV-1 has evolved mechanisms to evade host cell immune responses and persist for lifelong infection. Latent cellular reservoirs are responsible for this persistence of HIV-1 despite the powerful effects of highly active antiretroviral therapies (HAART) to control circulating viral load. While cellular reservoirs have been extensively studied, much of these studies have focused on peripheral blood and resting memory CD4+ T cells containing latent HIV-1 provirus; however, efforts to eradicate cellular reservoirs have been stunted by reservoirs found in tissues compartments that are not easily accessible. These tissues contain resting memory CD4+ T cells and tissue resident macrophages, another latent cellular reservoir to HIV-1. Tissue resident macrophages have been associated with HIV-1 infection since the 1980s, and evidence has continued to grow regarding their role in HIV-1 persistence. Specific biological characteristics play a vital role as to why macrophages are latent cellular reservoirs for HIV-1, and in vitro and in vivo studies exhibit how macrophages contribute to viral persistence in individuals and animals on antiretroviral therapies. In this review, we characterize the role and evolutionary advantages of macrophage reservoirs to HIV-1 and their contribution to HIV-1 persistence. In acknowledging the interplay of HIV-1 and macrophages in the host, we identify reasons why current strategies are incapable of eliminating HIV-1 reservoirs and why efforts must focus on eradicating reservoirs to find a future functional cure.


Sign in / Sign up

Export Citation Format

Share Document