scholarly journals Regulatory T Cells Contribute to HIV-1 Reservoir Persistence in CD4+ T Cells Through Cyclic Adenosine Monophosphate–Dependent Mechanisms in Humanized Mice In Vivo

2017 ◽  
Vol 216 (12) ◽  
pp. 1579-1591 ◽  
Author(s):  
Guangming Li ◽  
Jun-ichi Nunoya ◽  
Liang Cheng ◽  
Natalia Reszka-Blanco ◽  
Li-Chung Tsao ◽  
...  
2018 ◽  
Author(s):  
Guangming Li ◽  
Zheng Zhang ◽  
Natalia Reszka-Blanco ◽  
Feng Li ◽  
Liqun Chi ◽  
...  

ABSTRACTThe combination antiretroviral therapy (cART) effectively suppresses HIV-1 infection and enables HIV-infected individuals to live long productive lives. However, the persistence of HIV-1 reservoir cells with latent or low-replicating HIV-1 in patients under cART make HIV-1 infection an incurable disease. Recent studies have focused on the development of strategies such as epigenetic modulators to activate and purge these reservoirs. Bromodomain inhibitors (BETi) are epigenetic modulating compounds able to activate viral transcription in HIV-1 latency cell lines in a positive transcription elongation factor b (P-TEFb)-dependent manner. Little is known about the efficacy of activating HIV-1 reservoir cells under cART by BETi in vivo. In this study, we seek to test the potential of a BETi (I-BET151) in activating HIV-1 reservoir cells under effective cART in humanized mice in vivo. We discover that I-BET151 efficiently activates HIV-1 transcription in monocytic cells, but not in CD4+T cells, during suppressive cART in vivo. We further reveal that HIV-1 proviruses in monocytic cells are more sensitive to I-BET151 treatment than in T cells in vitro. Finally, we demonstrate that I-BET151-activated viral transcription in monocytic cells is dependent on both CDK2 and CDK9, whereas only CDK9 is involved in activation of HIV-1 by I-BET151 in T cells. Our findings indicate a role of myeloid cells in HIV-1 persistence, and highlights the limitation of measuring or targeting T cell reservoirs alone in terms of HIV-1 cure, as well as provides a potential strategy to reactivate monocytic reservoirs during cART.IMPORTANCEIt has been reported the low level of active P-TEFb critically contributes to the maintenance of HIV-1 latency or low-replication in HIV-1 reservoir cells under cART. Bromodomain inhibitors are used to activate HIV-1 replication in vitro but their effect on activation of the HIV-1 resevoirs with cART in vivo is not clear. We found that BETi (I-BET151) treatment reactivated HIV-1 gene expression in humanized mice during suppressive cART. Interestingly, I-BET151 preferentially reactivated HIV-1 gene expression in monocytic cells, but not in CD4 T cells. Furthermore, I-BET151 significantly increased HIV-1 transcription in monocytic cells, but not in latently infected CD4 T cells, via CDK2-dependent mechanisms. Our findings suggest that BETi can preferentially activate monocytic HIV-1 reservoir cells, and a combination of latency reversal agents targeting different cell types and pathways is needed to achieve reactivation of different HIV-1 reservoir cells during cART.


2019 ◽  
Vol 93 (12) ◽  
Author(s):  
Guangming Li ◽  
Zheng Zhang ◽  
Natalia Reszka-Blanco ◽  
Feng Li ◽  
Liqun Chi ◽  
...  

ABSTRACTCombination antiretroviral therapy (cART) effectively suppresses HIV-1 replication and enables HIV‑infected individuals to live long, productive lives. However, the persistence of HIV-1 reservoirs of both T and myeloid cells with latent or low-replicating HIV-1 in patients under cART makes HIV-1 infection an incurable disease. Recent studies have focused on the development of strategies to activate and purge these reservoirs. Bromodomain and extraterminal domain proteins (BETs) are epigenetic readers involved in modulating gene expression. Several bromodomain inhibitors (BETi) are reported to activate viral transcriptionin vitroin HIV-1 latency cell lines in a P-TEFb (CDK9/cyclin T1)-dependent manner. Little is known about BETi efficacy in activating HIV-1 reservoir cells under cARTin vivo. Here we report that a BETi (I-BET151) efficiently activated HIV-1 reservoirs under effective cART in humanized micein vivo. Interestingly, I-BET151 during suppressive cARTin vivoactivated HIV-1 gene expression only in monocytic cells and not in CD4+T cells. We further demonstrate that BETi preferentially enhanced HIV-1 gene expression in monocytic cells rather than in T cells and that whereas CDK9 was involved in activating HIV-1 by I-BET151 in both monocytic and T cells, CDK2 enhanced HIV-1 transcription in monocytic cells but inhibited it in T cells. Our findings reveal a role for CDK2 in differential modulation of HIV-1 gene expression in myeloid cells and in T cells and provide a novel strategy to reactivate monocytic reservoirs with BETi during cART.IMPORTANCEBromodomain inhibitors have been reported to activate HIV-1 transcriptionin vitro, but their effect on activation of HIV-1 reservoirs during cARTin vivois unclear. We found that BETi (I-BET151) treatment reactivated HIV-1 gene expression in humanized mice during suppressive cART. Interestingly, I-BET151 preferentially reactivated HIV-1 gene expression in monocytic cells, but not in CD4 T cells, in cART-treated mice. Furthermore, I-BET151 significantly increased HIV-1 transcription in monocytic cells, but not in HIV-1-infected CD4 T cells, via CDK2-dependent mechanisms. Our findings suggest that BETi can preferentially activate monocytic HIV-1 reservoir cells and that a combination of reservoir activation agents targeting different cell types and pathways is needed to achieve reactivation of different HIV-1 reservoir cells during cART.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1031
Author(s):  
Hung-Wen Chen ◽  
Chia-I. Lin ◽  
Ya-Hui Chuang

Primary biliary cholangitis (PBC) is a chronic liver autoimmune disease with augmented T helper (Th) 1 and corresponding cytokine IFN-γ immune responses. Using 2-octynoic acid (2-OA) coupled to OVA (2-OA-OVA)-induced mouse models of autoimmune cholangitis (inducible chemical xenobiotic models of PBC), our previous study demonstrated that overexpression of IFN-γ in the model mice enhanced liver inflammation upon disease initiation, but subsequently led to the suppression of chronic inflammation with an increase in interleukin-30 (IL-30) levels. In this study, we investigated whether IL-30 had an immunosuppressive function and whether it could be part of an immune therapeutic regimen for PBC, by treating model mice with murine IL-30-expressing recombinant adeno-associated virus (AAV-mIL-30). We first defined the effects of AAV-mIL-30 in vivo by administering it to a well-known concanavalin A (ConA)-induced hepatitis model of mice and found that AAV-mIL-30 reduced the numbers of activated CD25+CD4+ T cells and the levels of serum IFN-γ and IL-12. In autoimmune cholangitis, decreased numbers of activated CD4+ T cells and Foxp3+ regulatory T cells were noted in the mice treated with AAV-mIL-30 at 3 weeks after the 2-OA-OVA immunization. Treatment with IL-30 did not change the features of autoimmune cholangitis including autoantibodies, cell infiltration, and collagen deposition in the liver at 11 weeks of examination. However, increased levels of cytokines and chemokines were observed. These results suggest that IL-30 suppresses not only CD4+ T cells but also regulatory T cells. Additionally, the administration of IL-30 did not suppress liver inflammation in the murine model of PBC.


2010 ◽  
Vol 207 (13) ◽  
pp. 2869-2881 ◽  
Author(s):  
Christof Geldmacher ◽  
Njabulo Ngwenyama ◽  
Alexandra Schuetz ◽  
Constantinos Petrovas ◽  
Klaus Reither ◽  
...  

HIV-1 infection results in the progressive loss of CD4 T cells. In this study, we address how different pathogen-specific CD4 T cells are affected by HIV infection and the cellular parameters involved. We found striking differences in the depletion rates between CD4 T cells to two common opportunistic pathogens, cytomegalovirus (CMV) and Mycobacterium tuberculosis (MTB). CMV-specific CD4 T cells persisted after HIV infection, whereas MTB-specific CD4 T cells were depleted rapidly. CMV-specific CD4 T cells expressed a mature phenotype and produced very little IL-2, but large amounts of MIP-1β. In contrast, MTB-specific CD4 T cells were less mature, and most produced IL-2 but not MIP-1β. Staphylococcal enterotoxin B–stimulated IL-2–producing cells were more susceptible to HIV infection in vitro than MIP-1β–producing cells. Moreover, IL-2 production was associated with expression of CD25, and neutralization of IL-2 completely abrogated productive HIV infection in vitro. HIV DNA was found to be most abundant in IL-2–producing cells, and least abundant in MIP-1β–producing MTB-specific CD4 T cells from HIV-infected subjects with active tuberculosis. These data support the hypothesis that differences in function affect the susceptibility of pathogen-specific CD4 T cells to HIV infection and depletion in vivo, providing a potential mechanism to explain the rapid loss of MTB-specific CD4 T cells after HIV infection.


2013 ◽  
Vol 9 (12) ◽  
pp. e1003812 ◽  
Author(s):  
Kei Sato ◽  
Naoko Misawa ◽  
Shingo Iwami ◽  
Yorifumi Satou ◽  
Masao Matsuoka ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 568-568
Author(s):  
Krystalyn E. Hudson ◽  
James C. Zimring

Introduction: Loss of humoral tolerance to red blood cell (RBC) antigens may lead to the generation of pathogenic autoantibodies and result in autoimmune hemolytic anemia (AIHA), a severe and potentially fatal disease. Failure of tolerance to RBC antigens occurs with considerable frequency (1-3 cases/1,000 adults) and prevalence of AIHA is as high as 30% in persons with compromised B and/or T cell tolerance mechanisms. However, RBC-specific tolerance mechanisms are poorly understood. To elucidate the immune tolerances to RBC autoantigens, we utilized HOD mice. The HOD mouse expresses an RBC-specific transgene consisting of hen egg lysozyme (HEL), ovalbumin (OVA), and Duffy. Using the HOD model, we previously demonstrated B cell tolerance to RBC-specific HOD antigen is incomplete; however, T cell tolerance is stringent. HOD mice have similar detectable frequencies of HOD-specific CD4+ T cells compared to B6 mice. Although present, autoreactive HOD-specific CD4+ T cells are non-functional. Circumventing T cell tolerance by adoptive transfer, HOD mice make high titer anti-HOD autoantibodies in vivo. Thus, despite the presence of autoreactive B cells, no HOD-reactive antibodies are detectable unless CD4+ T cells are given, indicating T cell tolerance is a stopgap to autoimmunity. Methods: Leukocytes from C57BL/6 (B6) and HOD mice were harvested and OVA-specific CD4+ T cell responses were assessed by tetramer-pulldown assays with pooled tetramers I-Ab-OVA 329-337/326-334. Isolated cells were stained for surface and intracellular markers and analyzed via flow cytometry. For in vivo analysis, mice were treated with 300ug anti-CD25 (clone PC-61) depleting antibody or isotype control; a subset of antibody-treated mice was immunized with OVA/CFA. Antibodies bound to HOD RBCs were determined by direct antibody test. Anti-HOD antibodies were quantified by indirect immunofluorescence using HOD RBCs as targets. Results: Tetramer pull-down assays revealed similar numbers of OVA-reactive CD4+ T cells from HOD and B6 mice (mean 56 and 40, respectively, p = 0.3). However, cell surface and intracellular marker staining demonstrated that HOD mice had higher numbers of OVA-tetramer reactive CD4+ T cells that express regulatory markers CD25 and FoxP3, and exhaustion marker PD1 as compared to control B6 mice. Inhibitory CTLA4 expression was not detectable on OVA-reactive CD4+ T cells from HOD or B6 mice. To test whether regulatory T cells were required for RBC-specific immune tolerance, HOD and B6 mice were treated with CD25 depleting antibody or isotype control antibody. Anti-CD25 antibody treated mice had a significant reduction of CD25+ cells 4 days post treatment (p < 0.001, 2 independent experiments). Similarly, there was a significant reduction in FoxP3+CD25+CD4+ T cells (Tregs) in anti-CD25 treated mice (p < 0.001), compared to isotype. Mice received weekly injections of anti-CD25 or isotype antibody to maintain depletion for one month. A subset of mice received an OVA/CFA immunization. Sustained CD25+ depletion did not result in anti-HOD autoantibody generation. Further, there was no change in the endogenous frequency of OVA-reactive CD4+ T cells between HOD and B6 mice, regardless of antibody treatment. Similarly, HOD mice treated with depletion (or isotype) antibody and immunized with OVA/CFA did not make detectable anti-HOD autoantibodies. Consistent with lack of detectable autoantibodies, no expansion of OVA-tetramer reactive CD4+ T cells was observed in HOD mice. In contrast, B6 mice (treated with anti-CD25 or isotype antibody) had a detectable expansion of OVA-specific CD4+ T cells as a result of immunization. Conclusions: The data demonstrate a phenotypic difference between the OVA-reactive CD4+ T cells from HOD and B6 mice, with an increase in number of Tregs detectable in HOD mice. Administration of anti-CD25 antibody significantly reduced the number of overall CD25+ cells and Tregs. Prolonged depletion of these cellular subsets did not elicit autoantibodies in HOD mice. Further, immunization of CD25 depleted mice with a strong immune stimulus (OVA/CFA, known to expand OVA-reactive T cells in B6 mice), did not induce anti-HOD autoantibodies nor did it expand OVA-specific autoreactive CD4+ T cells in HOD mice. Together, these data demonstrate that CD25+ cells are not required for the maintenance of RBC-specific T cell tolerance and suggest a role for other regulatory mechanisms. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1175-1183 ◽  
Author(s):  
Brian Kavanagh ◽  
Shaun O'Brien ◽  
David Lee ◽  
Yafei Hou ◽  
Vivian Weinberg ◽  
...  

AbstractCytotoxic T lymphocyte–associated antigen 4 (CTLA4) delivers inhibitory signals to activated T cells. CTLA4 is constitutively expressed on regulatory CD4+ T cells (Tregs), but its role in these cells remains unclear. CTLA4 blockade has been shown to induce antitumor immunity. In this study, we examined the effects of anti-CTLA4 antibody on the endogenous CD4+ T cells in cancer patients. We show that CTLA4 blockade induces an increase not only in the number of activated effector CD4+ T cells, but also in the number of CD4+ FoxP3+ Tregs. Although the effects were dose-dependent, CD4+ FoxP3+ regulatory T cells could be expanded at lower antibody doses. In contrast, expansion of effector T cells was seen only at the highest dose level studied. Moreover, these expanded CD4+ FoxP3+ regulatory T cells are induced to proliferate with treatment and possess suppressor function. Our results demonstrate that treatment with anti-CTLA4 antibody does not deplete human CD4+ FoxP3+ Tregs in vivo, but rather may mediate its effects through the activation of effector T cells. Our results also suggest that CTLA4 may inhibit Treg proliferation similar to its role on effector T cells. This study is registered at http://www.clinicaltrials.gov/ct2/show/NCT00064129, registry number NCT00064129.


Blood ◽  
2004 ◽  
Vol 104 (10) ◽  
pp. 3249-3256 ◽  
Author(s):  
Laurence Weiss ◽  
Vladimira Donkova-Petrini ◽  
Laure Caccavelli ◽  
Michèle Balbo ◽  
Cédric Carbonneil ◽  
...  

Abstract The present study demonstrates that CD4+CD25+ T cells, expanded in peripheral blood of HIV-infected patients receiving highly active antiretroviral therapy (HAART), exhibit phenotypic, molecular, and functional characteristics of regulatory T cells. The majority of peripheral CD4+CD25+ T cells from HIV-infected patients expressed a memory phenotype. They were found to constitutively express transcription factor forkhead box P3 (Foxp3) messengers. CD4+CD25+ T cells weakly proliferated to immobilized anti-CD3 monoclonal antibody (mAb) and addition of soluble anti-CD28 mAb significantly increased proliferation. In contrast to CD4+CD25– T cells, CD4+CD25+ T cells from HIV-infected patients did not proliferate in response to recall antigens and to p24 protein. The proliferative capacity of CD4 T cells to tuberculin, cytomegalovirus (CMV), and p24 significantly increased following depletion of CD4+CD25+ T cells. Furthermore, addition of increasing numbers of CD4+CD25+ T cells resulted in a dose-dependent inhibition of CD4+CD25– T-cell proliferation to tuberculin and p24. CD4+CD25+ T cells responded specifically to p24 antigen stimulation by expressing transforming growth factor β (TGF-β) and interleukin 10 (IL-10), thus indicating the presence of p24-specific CD4+ T cells among the CD4+CD25+ T-cell subset. Suppressive activity was not dependent on the secretion of TGF-β or IL-10. Taken together, our results suggest that persistence of HIV antigens might trigger the expansion of CD4+CD25+ regulatory T cells, which might induce a tolerance to HIV in vivo.


2011 ◽  
Vol 188 (3) ◽  
pp. 1091-1097 ◽  
Author(s):  
Matthias Klein ◽  
Martin Vaeth ◽  
Tobias Scheel ◽  
Stephan Grabbe ◽  
Ria Baumgrass ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document