scholarly journals Sensory axons induce epithelial lipid microdomain remodeling and determine the distribution of junctions in the epidermis

2021 ◽  
Author(s):  
Jeffrey B Rosa ◽  
Khaled Y Nassman ◽  
Alvaro Sagasti

Epithelial cell properties are determined by the polarized distribution of membrane lipids, the cytoskeleton, and adhesive junctions. Epithelia are often profusely innervated, but little work has addressed how contact with neurites affects the polarized organization of epithelial components. In previous work, we found that basal keratinocytes in the larval zebrafish epidermis wrap around axons to enclose them in ensheathment channels sealed by autotypic cell junctions. In this study, we used live imaging to characterize how sensory axons remodel cell membranes, the actin cytoskeleton, and adhesive junctions in basal keratinocytes. At the apical surface of basal keratinocytes, axons promoted the formation of lipid microdomains quantitatively enriched in reporters for PI(4,5)P2 and liquid-ordered (Lo) membranes. Lipid microdomains supported the formation of cadherin-enriched F-actin protrusions, which wrapped around axons, likely initiating the formation of ensheathment channels. Lo reporters, but not reporters of liquid-disordered (Ld) membranes, became progressively enriched at axon-associated membrane domains as autotypic junctions matured at ensheathment channels. In the absence of axons, cadherin-enriched lipid microdomains still formed on basal cell membranes, but were not organized into the contiguous domains normally associated with axons. Instead, these isolated domains formed ectopic heterotypic junctions with overlying periderm cells, a distinct epithelial cell type in the epidermis. Thus, axons inhibit the formation of epithelial heterotypic junctions by recruiting cadherin-rich lipid microdomains to form autotypic junctions at ensheathment channels. These findings demonstrate that sensory nerve endings dramatically remodel polarized epithelial components and regulate the adhesive properties of the epidermis.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Torey R Arnold ◽  
Joseph H Shawky ◽  
Rachel E Stephenson ◽  
Kayla M Dinshaw ◽  
Tomohito Higashi ◽  
...  

Cellular forces sculpt organisms during development, while misregulation of cellular mechanics can promote disease. Here, we investigate how the actomyosin scaffold protein anillin contributes to epithelial mechanics in Xenopus laevis embryos. Increased mechanosensitive recruitment of vinculin to cell–cell junctions when anillin is overexpressed suggested that anillin promotes junctional tension. However, junctional laser ablation unexpectedly showed that junctions recoil faster when anillin is depleted and slower when anillin is overexpressed. Unifying these findings, we demonstrate that anillin regulates medial-apical actomyosin. Medial-apical laser ablation supports the conclusion that that tensile forces are stored across the apical surface of epithelial cells, and anillin promotes the tensile forces stored in this network. Finally, we show that anillin’s effects on cellular mechanics impact tissue-wide mechanics. These results reveal anillin as a key regulator of epithelial mechanics and lay the groundwork for future studies on how anillin may contribute to mechanical events in development and disease.


Author(s):  
B. Van Deurs ◽  
J. K. Koehler

The choroid plexus epithelium constitutes a blood-cerebrospinal fluid (CSF) barrier, and is involved in regulation of the special composition of the CSF. The epithelium is provided with an ouabain-sensitive Na/K-pump located at the apical surface, actively pumping ions into the CSF. The choroid plexus epithelium has been described as “leaky” with a low transepithelial resistance, and a passive transepithelial flux following a paracellular route (intercellular spaces and cell junctions) also takes place. The present report describes the structural basis for these “barrier” properties of the choroid plexus epithelium as revealed by freeze fracture.Choroid plexus from the lateral, third and fourth ventricles of rats were used. The tissue was fixed in glutaraldehyde and stored in 30% glycerol. Freezing was performed either in liquid nitrogen-cooled Freon 22, or directly in a mixture of liquid and solid nitrogen prepared in a special vacuum chamber. The latter method was always used, and considered necessary, when preparations of complementary (double) replicas were made.


1980 ◽  
Vol 192 (1) ◽  
pp. 145-153 ◽  
Author(s):  
A Herscovics ◽  
B Bugge ◽  
A Quaroni ◽  
K Kirsch

The labelled glycopeptides obtained by Pronase digestion of rat intestinal epithelial cell membranes were examined by gel filtration after injection of D-[2-3H]mannose and L-[6-3H]fucose. Three labelled fraction were eluted in the following order from Bio-Gel P-6, Fraction I, which was excluded from the gel, was labelled mostly with [3H]fucose and slightly with [3H]mannose. Fraction II contained “complex” asparagine-linked oligosaccharides since it was labelled with [3H]mannose and [3H]fucose, was stable to mild alkali treatment, and resistant to endo-beta-N-acetyl-glucosaminidase H. Fraction III contained “high-mannose” asparagine-linked oligosaccharides, which were labelled with [3H]mannose, but not with [3H]fucose; these were sensitive to endo-beta-N-acetylglucosaminidase H, and were adsorbed on concanavalin A-Sepharose and subsequently eluted with methyl alpha-D-mannopyranoside. The time course of incorporation of [3H]mannose into these glycopeptides in microsomal fractions showed that high-mannose oligosaccharides were precursors of complex oligosaccharides. The rate of this processing was faster in rapidly dividing crypt cells than in differentiated villus cells. The ratio of radioactively labelled complex oligosaccharides to high-mannose oligosaccharides, 3h after [3H]mannose injection, was greater in crypt than in villus-cell lateral membranes. Luminal membranes of both crypt and villus cells were greatly enriched in labelled complex oligosaccharides compared with the labelling in lateral-basal membranes. These studies show that intestinal epithelial cells are polarized with respect to the structure of the asparagine-linked oligosaccharides on their membrane glycoproteins. During differentiation of these cells quantitative differences in labelled membrane glycopeptides, But no major qualitative change, were observed.


2015 ◽  
Vol 62 (4) ◽  
pp. 1020-1033 ◽  
Author(s):  
Sukryool Kang ◽  
Chen-Yu Lee ◽  
Monira Goncalves ◽  
Andrew D. Chisholm ◽  
Pamela C. Cosman

2020 ◽  
Vol 319 (2) ◽  
pp. L369-L379
Author(s):  
Daniel D. Lee ◽  
Alexandra Hochstetler ◽  
Eric Sah ◽  
Haiming Xu ◽  
Chinn-Woan Lowe ◽  
...  

Proper development of the respiratory bronchiole and alveolar epithelium proceeds through coordinated cross talk between the interface of epithelium and neighboring mesenchyme. Signals that facilitate and coordinate the cross talk as the bronchial forming canalicular stage transitions to construction of air-exchanging capillary-alveoli niche in the alveolar stage are poorly understood. Expressed within this decisive region, levels of aminoacyl-tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1) inversely correlate with the maturation of the lung. The present study addresses the role of AIMP1 in lung development through the generation and characterization of Aimp1−/− mutant mice. Mating of Aimp1+/− produced offspring in expected Mendelian ratios throughout embryonic development. However, newborn Aimp1−/− pups exhibited neonatal lethality with mild cyanosis. Imaging both structure and ultrastructure of Aimp1−/− lungs showed disorganized bronchial epithelium, decreased type I but not type II cell differentiation, increased distal vessels, and disruption of E-cadherin deposition in cell-cell junctions. Supporting the in vivo findings of disrupted epithelial cell-cell junctions, in vitro biochemical experiments show that a portion of AIMP1 binds to phosphoinositides, the lipid anchor of proteins that have a fundamental role in both cellular membrane and actin cytoskeleton organization; a dramatic disruption in F-actin cytoskeleton was observed in Aimp1−/− mouse embryonic fibroblasts. Such observed structural defects may lead to disrupted cell-cell boundaries. Together, these results suggest a requirement of AIMP1 in epithelial cell differentiation in proper lung development.


Sign in / Sign up

Export Citation Format

Share Document