scholarly journals Release of HIV-1 particles from the viral compartment in macrophages requires an associated cytoskeleton and is driven by mechanical constraints

2022 ◽  
Author(s):  
Vasco Rodrigues ◽  
Sarah Taheraly ◽  
Mathieu Maurin ◽  
Mabel San-Roman ◽  
Emma Granier ◽  
...  

A defining feature of HIV-1 replication in macrophages is that viral assembly occurs at the limiting membrane of a compartment often named VCC (virus-containing compartments) that is connected to the extracellular medium. The newly formed viral progeny pinches of the membrane and accumulates in the lumen of the VCC. While HIV budding has been extensively studied, very little is known about how viral particles present in the lumen of VCC are released in the extracellular medium. Here we show that the actin dynamics are critical for this process by combining ultrastructural analyses, time-lapse microscopy and perturbations of the actin cytoskeleton. We found that jasplakinolide, which stabilizes actin fibres, inhibited viral release from HIV-1-infected macrophages, but not from infected HeLa cells. Furthermore, in jasplakinolide-treated macrophages, VCC became scattered and no longer co-localized with the integrin CD18, nor the phosphorylated form of the focal adhesion kinase PYK2. Inhibition of PYK2 activity in infected macrophages promoted intracellular retention of viral particles in VCC that were no longer connected to the plasma membrane. Finally, we stimulated the rapid release of viral particles from the VCC by subjecting infected macrophages to frustrated phagocytosis. As macrophages spread on IgG-coated glass surfaces, VCC rapidly migrated to the basal membrane and released their viral content in the extracellular medium, which required their association with CD18 and the actin cytoskeleton. These results highlight that VCC trafficking and virus release are intimately linked to the reorganization of the macrophage actin cytoskeleton in response to external physical cues, suggesting that it might be regulated in tissues by the mechanical stress to which these cells are exposed.

1998 ◽  
Vol 111 (12) ◽  
pp. 1649-1658 ◽  
Author(s):  
C. Ballestrem ◽  
B. Wehrle-Haller ◽  
B.A. Imhof

The actin cytoskeleton maintains the cellular architecture and mediates cell movements. To explore actin cytoskeletal dynamics, the enhanced green fluorescent protein (EGFP) was fused to human β-actin. The fusion protein was incorporated into actin fibers which became depolymerized upon cytochalasin B treatment. This functional EGFP-actin construct enabled observation of the actin cytoskeleton in living cells by time lapse fluorescence microscopy. Stable expression of the construct was obtained in mammalian cell lines of different tissue origins. In stationary cells, actin rich, ring-like structured ‘actin clouds’ were observed in addition to stress fibers. These ruffle-like structures were found to be involved in the reorganization of the actin cytoskeleton. In migratory cells, EGFP-actin was found in the advancing lamellipodium. Immobile actin spots developed in the lamellipodium and thin actin fibers formed parallel to the leading edge. Thus EGFP-actin expressed in living cells unveiled structures involved in the dynamics of the actin cytoskeleton.


2017 ◽  
Vol 91 (13) ◽  
Author(s):  
Fei Yi ◽  
Jia Guo ◽  
Deemah Dabbagh ◽  
Mark Spear ◽  
Sijia He ◽  
...  

ABSTRACT A dynamic actin cytoskeleton is necessary for viral entry, intracellular migration, and virion release. For HIV-1 infection, during entry, the virus triggers early actin activity by hijacking chemokine coreceptor signaling, which activates a host dependency factor, cofilin, and its kinase, the LIM domain kinase (LIMK). Although knockdown of human LIM domain kinase 1 (LIMK1) with short hairpin RNA (shRNA) inhibits HIV infection, no specific small-molecule inhibitor of LIMK has been available. Here, we describe the design and discovery of novel classes of small-molecule inhibitors of LIMK for inhibiting HIV infection. We identified R10015 as a lead compound that blocks LIMK activity by binding to the ATP-binding pocket. R10015 specifically blocks viral DNA synthesis, nuclear migration, and virion release. In addition, R10015 inhibits multiple viruses, including Zaire ebolavirus (EBOV), Rift Valley fever virus (RVFV), Venezuelan equine encephalitis virus (VEEV), and herpes simplex virus 1 (HSV-1), suggesting that LIMK inhibitors could be developed as a new class of broad-spectrum antiviral drugs. IMPORTANCE The actin cytoskeleton is a structure that gives the cell shape and the ability to migrate. Viruses frequently rely on actin dynamics for entry and intracellular migration. In cells, actin dynamics are regulated by kinases, such as the LIM domain kinase (LIMK), which regulates actin activity through phosphorylation of cofilin, an actin-depolymerizing factor. Recent studies have found that LIMK/cofilin are targeted by viruses such as HIV-1 for propelling viral intracellular migration. Although inhibiting LIMK1 expression blocks HIV-1 infection, no highly specific LIMK inhibitor is available. This study describes the design, medicinal synthesis, and discovery of small-molecule LIMK inhibitors for blocking HIV-1 and several other viruses and emphasizes the feasibility of developing LIMK inhibitors as broad-spectrum antiviral drugs.


2019 ◽  
Vol 93 (11) ◽  
Author(s):  
Olivier Leymarie ◽  
Leslie Lepont ◽  
Margaux Versapuech ◽  
Delphine Judith ◽  
Sophie Abelanet ◽  
...  

ABSTRACTHIV-1 infection of macrophages leads to the sequestration of newly formed viruses in intracellular plasma membrane-connected structures termed virus-containing compartments (VCCs), where virions remain infectious and hidden from immune surveillance. The cellular restriction factor bone marrow stromal cell antigen 2 (BST2), which prevents HIV-1 dissemination by tethering budding viral particles at the plasma membrane, can be found in VCCs. The HIV-1 accessory protein Vpu counteracts the restriction factor BST2 by downregulating its expression and removing it from viral budding sites. Numerous studies described these Vpu countermeasures in CD4+T cells or model cell lines, but the interplay between Vpu and BST2 in VCC formation and HIV-1 production in macrophages is less explored. Here, we show that Vpu expression in HIV-1-infected macrophages enhances viral release. This effect is related to Vpu’s ability to circumvent BST2 antiviral activity. We show that in absence of Vpu, BST2 is enriched in VCCs and colocalizes with capsid p24, whereas Vpu expression significantly reduces the presence of BST2 in these compartments. Furthermore, our data reveal that BST2 is dispensable for the formation of VCCs and that Vpu expression impacts the volume of these compartments. This Vpu activity partly depends on BST2 expression and requires the integrity of the Vpu transmembrane domain, the dileucine-like motif E59XXXLV64and phosphoserines 52 and 56 of Vpu. Altogether, these results highlight that Vpu controls the volume of VCCs and promotes HIV-1 release from infected macrophages.IMPORTANCEHIV-1 infection of macrophages leads to the sequestration of newly formed viruses in virus-containing compartments (VCCs), where virions remain infectious and hidden from immune surveillance. The restriction factor BST2, which prevents HIV-1 dissemination by tethering budding viral particles, can be found in VCCs. The HIV-1 Vpu protein counteracts BST2. This study explores the interplay between Vpu and BST2 in the viral protein functions on HIV-1 release and viral particle sequestration in VCCs in macrophages. The results show that Vpu controls the volume of VCCs and favors viral particle release. These Vpu functions partly depend on Vpu’s ability to antagonize BST2. This study highlights that the transmembrane domain of Vpu and two motifs of the Vpu cytoplasmic domain are required for these functions. These motifs were notably involved in the control of the volume of VCCs by Vpu but were dispensable for the prevention of the specific accumulation of BST2 in these structures.


2021 ◽  
Vol 22 (16) ◽  
pp. 8366
Author(s):  
Ignacio Relaño-Rodríguez ◽  
María de la Sierra Espinar-Buitrago ◽  
Vanessa Martín-Cañadilla ◽  
Rafael Gómez-Ramírez ◽  
María Ángeles Muñoz-Fernández

Human immunodeficiency virus (HIV-1) is still a major problem, not only in developing countries but is also re-emerging in several developed countries, thus the development of new compounds able to inhibit the virus, either for prophylaxis or treatment, is still needed. Nanotechnology has provided the science community with several new tools for biomedical applications. G2-S16 is a polyanionic carbosilane dendrimer capable of inhibiting HIV-1 in vitro and in vivo by interacting directly with viral particles. One of the main barriers for HIV-1 eradication is the reservoirs created in primoinfection. These reservoirs, mainly in T cells, are untargetable by actual drugs or immune system. Thus, one approach is inhibiting HIV-1 from reaching these reservoir cells. In this context, macrophages play a main role as they can deliver viral particles to T cells establishing reservoirs. We showed that G2-S16 dendrimer is capable of inhibiting the infection from infected macrophages to healthy T CD4/CD8 lymphocytes by eliminating HIV-1 infectivity inside macrophages, so they are not able to carry infectious particles to other body locations, thus preventing the reservoirs from forming.


2004 ◽  
Vol 165 (6) ◽  
pp. 781-788 ◽  
Author(s):  
Sebastien Carreno ◽  
Åsa E. Engqvist-Goldstein ◽  
Claire X. Zhang ◽  
Kent L. McDonald ◽  
David G. Drubin

In diverse species, actin assembly facilitates clathrin-coated vesicle (CCV) formation during endocytosis. This role might be an adaptation specific to the unique environment at the cell cortex, or it might be fundamental, facilitating CCV formation on different membranes. Proteins of the Sla2p/Hip1R family bind to actin and clathrin at endocytic sites in yeast and mammals. We hypothesized that Hip1R might also coordinate actin assembly with clathrin budding at the trans-Golgi network (TGN). Using deconvolution and time-lapse microscopy, we showed that Hip1R is present on CCVs emerging from the TGN. These vesicles contain the mannose 6-phosphate receptor involved in targeting proteins to the lysosome, and the actin nucleating Arp2/3 complex. Silencing of Hip1R expression by RNAi resulted in disruption of Golgi organization and accumulation of F-actin structures associated with CCVs on the TGN. Hip1R silencing and actin poisons slowed cathepsin D exit from the TGN. These studies establish roles for Hip1R and actin in CCV budding from the TGN for lysosome biogenesis.


2015 ◽  
Vol 90 (6) ◽  
pp. 2928-2937 ◽  
Author(s):  
Ai-Ping Jiang ◽  
Jin-Feng Jiang ◽  
Ji-Fu Wei ◽  
Ming-Gao Guo ◽  
Yan Qin ◽  
...  

ABSTRACTThe gastrointestinal mucosa is the primary site where human immunodeficiency virus type 1 (HIV-1) invades, amplifies, and becomes persistently established, and cell-to-cell transmission of HIV-1 plays a pivotal role in mucosal viral dissemination. Mast cells are widely distributed in the gastrointestinal tract and are early targets for invasive pathogens, and they have been shown to have increased density in the genital mucosa in HIV-infected women. Intestinal mast cells express numerous pathogen-associated molecular patterns (PAMPs) and have been shown to combat various viral, parasitic, and bacterial infections. However, the role of mast cells in HIV-1 infection is poorly defined. In this study, we investigated their potential contributions to HIV-1 transmission. Mast cells isolated from gut mucosal tissues were found to express a variety of HIV-1 attachment factors (HAFs), such as DC-SIGN, heparan sulfate proteoglycan (HSPG), and α4β7 integrin, which mediate capture of HIV-1 on the cell surface. Intriguingly, following coculture with CD4+T cells, mast cell surface-bound viruses were efficiently transferred to target T cells. Prior blocking with anti-HAF antibody or mannan before coculture impaired viraltrans-infection. Cell-cell conjunctions formed between mast cells and T cells, to which viral particles were recruited, and these were required for efficient cell-to-cell HIV-1 transmission. Our results reveal a potential function of gut mucosal mast cells in HIV-1 dissemination in tissues. Strategies aimed at preventing viral capture and transfer mediated by mast cells could be beneficial in combating primary HIV-1 infection.IMPORTANCEIn this study, we demonstrate the role of human mast cells isolated from mucosal tissues in mediating HIV-1trans-infection of CD4+T cells. This finding facilitates our understanding of HIV-1 mucosal infection and will benefit the development of strategies to combat primary HIV-1 dissemination.


1979 ◽  
Vol 37 (1) ◽  
pp. 169-180
Author(s):  
P.B. Armstrong

The sole cell type (the amoebocyte) found in the coelomic fluid of the horseshoe crab, Limulus polyphemus can be stimulated to become motile by extravasation or trauma. Motility was studied using time-lapse microcinematography and direct microscopic examination of cells in tissue culture and in gill leaflets isolated from young animals. Phase-contrast and Nomarski differential-interference contrast optics were employed. Both in culture and in the gills, motile cells showed 2 interconvertible morphological types: the contracted cell, which was compact and rounded and had a relatively small area of contact with the substratum, and a flattened from with a larger area of contact. In both morphological types, motility involved the protrusion of hyaline pseudopods followed by flow of granular endoplasm forward in the pseudoplod. Cellular motility in vivo (in the gill leaflet) was morphologically identical to that displayed in tissue culture. In culture, motility was unaffected by the nature of the substratum: cells were indistinguishable on fluid (paraffin oil) or solid (glass) substrata or on hydrophobic (paraffin oil, siliconized glass) or hydrophilic (clean glass) surfaces. Cells migrated and spread on agar surfaces. Cell motility was unaffected by high concentrations (100 micrograms/ml) of the microtubule-depolymerizing agent colcemid and was abolished by cytochalasin B at 1 microgram/ml.


2000 ◽  
Vol 113 (7) ◽  
pp. 1241-1254 ◽  
Author(s):  
M.K. Shaw ◽  
H.L. Compton ◽  
D.S. Roos ◽  
L.G. Tilney

We have used drugs to examine the role(s) of the actin and microtubule cytoskeletons in the intracellular growth and replication of the intracellular protozoan parasite, Toxoplasma gondii. By using a 5 minute infection period and adding the drugs shortly after entry we can treat parasites at the start of intracellular development and 6–8 hours prior to the onset of daughter cell budding. Using this approach we found, somewhat surprisingly, that reagents that perturb the actin cytoskeleton in different ways (cytochalasin D, latrunculin A and jasplakinolide) had little effect on parasite replication although they had the expected effects on the host cells. These actin inhibitors did, however, disrupt the orderly turnover of the mother cell organelles leading to the formation of a large residual body at the posterior end of each pair of budding parasites. Treating established parasite cultures with the actin inhibitors blocked ionophore-induced egression of tachyzoites from the host cells, demonstrating that intracellular parasites were susceptible to the effects of these inhibitors. In contrast, the anti-microtubule drugs oryzalin and taxol, and to a much lesser extent nocodazole, which affect microtubule dynamics in different ways, blocked parasite replication by disrupting the normal assembly of the apical conoid and the microtubule inner membrane complex (IMC) in the budding daughter parasites. Centrosome replication and assembly of intranuclear spindles, however, occurred normally. Thus, daughter cell budding per se is dependent primarily on the parasite microtubule system and does not require a dynamic actin cytoskeleton, although disruption of actin dynamics causes problems in the turnover of parasite organelles.


Author(s):  
Agustin Valenzuela ◽  
Julià Blanco ◽  
Christian Callebaut ◽  
Etienne Jacotot ◽  
Carmen Lluis ◽  
...  

1997 ◽  
Vol 137 (4) ◽  
pp. 891-898 ◽  
Author(s):  
Hiroyuki Adachi ◽  
Yasuhiro Takahashi ◽  
Takeshi Hasebe ◽  
Mikako Shirouzu ◽  
Shigeyuki Yokoyama ◽  
...  

The gapA gene encoding a novel RasGTPase-activating protein (RasGAP)–related protein was found to be disrupted in a cytokinesis mutant of Dictyostelium that grows as giant and multinucleate cells in a dish culture. The predicted sequence of the GAPA protein showed considerable homology to those of Gap1/Sar1 from fission yeast and the COOH-terminal half of mammalian IQGAPs, the similarity extending beyond the RasGAP-related domain. In suspension culture, gapA− cells showed normal growth in terms of the increase in cell mass, but cytokinesis inefficiently occurred to produce spherical giant cells. Time-lapse recording of the dynamics of cell division in a dish culture revealed that, in the case of gapA− cells, cytokinesis was very frequently reversed at the step in which the midbody connecting the daughter cells should be severed. Earlier steps of cytokinesis in the gapA− cells seemed to be normal, since myosin II was accumulated at the cleavage furrow. Upon starvation, gapA− cells developed and formed fruiting bodies with viable spores, like the wild-type cells. These results indicate that the GAPA protein is specifically involved in the completion of cytokinesis. Recently, it was reported that IQGAPs are putative effectors for Rac and CDC42, members of the Rho family of GTPases, and participate in reorganization of the actin cytoskeleton. Thus, it is possible that Dictyostelium GAPA participates in the severing of the midbody by regulating the actin cytoskeleton through an interaction with a member of small GTPases.


Sign in / Sign up

Export Citation Format

Share Document