scholarly journals Updated projections for COVID-19 omicron wave in Florida

Author(s):  
Thomas J. Hladish ◽  
Alexander N. Pillai ◽  
Ira M. Longini

In this report, we use a detailed simulation model to assess and project the COVID-19 epidemic in Florida. The model is a data-driven, stochastic, discrete-time, agent based model with an explicit representation of people and places. Using the model, we find that the omicron variant wave in Florida is likely to cause many more infections than occurred during the delta variant wave. Due to testing limitations and often mild symptoms, however, we anticipate that omicron infections will be underreported compared to delta. We project that reported cases of COVID-19 will continue to grow significantly and peak in early January 2022, and that the number of reported COVID-19 deaths due to omicron may be 1/3 of the total caused by the delta wave.

Author(s):  
John Wu ◽  
David Ben-Arieh ◽  
Zhenzhen Shi

This research proposes an agent-based simulation model combined with the strength of systemic dynamic mathematical model, providing a new modeling and simulation approach of the pathogenesis of AIR. AIR is the initial stage of a typical sepsis episode, often leading to severe sepsis or septic shocks. The process of AIR has been in the focal point affecting more than 750,000 patients annually in the United State alone. Based on the agent-based model presented herein, clinicians can predict the sepsis pathogenesis for patients using the prognostic indicators from the simulation results, planning the proper therapeutic interventions accordingly. Impressively, the modeling approach presented creates a friendly user-interface allowing physicians to visualize and capture the potential AIR progression patterns. Based on the computational studies, the simulated behavior of the agent–based model conforms to the mechanisms described by the system dynamics mathematical models established in previous research.


PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0208775 ◽  
Author(s):  
Elizabeth Hunter ◽  
Brian Mac Namee ◽  
John Kelleher

2015 ◽  
Vol 72 (4) ◽  
Author(s):  
Erma Suryani ◽  
Rully Agus Hendrawan ◽  
Umi Salama ◽  
Lily Puspa Dewi

Several studies have been conducted regarding save energy in consuming the electricity through the simple changes in routines and habits. In the case of electricity consumption, consumer behavior might influenced by several factors such as consumer profession, season, and environmental awareness. In this paper, we developed an Agent Based Model (ABM) to analyze the behavior of different agents in consuming the electricity energy for each type of profession (agent) as well as their interaction with the environment. This paper demonstrates a prototype agent based simulation model to estimate the electricity consumption based on the existing condition and some scenarios to reduce the electricity consumption from consumer point of view. From the scenario results, we analyzed the impact of the save energy to increase the electrification ratio. 


Author(s):  
Riccardo Boero ◽  
Giangiacomo Bravo ◽  
Marco Castellani ◽  
Flaminio Squazzoni

2021 ◽  
Author(s):  
Augusto Cabrera-Becerril ◽  
Pedro Miramontes ◽  
Raúl Peralta

AbstractWe introduce an agent-based model to simulate the epidemiological dynamics of COVID-19. Most computational models proposed to study this epidemic do no take into account human mobility. We present a direct simulation model where mobility plays a key role and propose as well four quarantine strategies. The results show that the no-quarantine strategy does lead to a high peak of contagions with no rebound. Quarantined strategies, for their part, show a re-emergence of the epidemic with smaller and softer peaks.


Author(s):  
Shuhui Gong ◽  
John Cartlidge ◽  
Ruibin Bai ◽  
Yang Yue ◽  
Qingquan Li ◽  
...  

2021 ◽  
Author(s):  
Hanchu Zhou ◽  
Qingpeng Zhang ◽  
Zhidong Cao ◽  
Helai Huang ◽  
Daniel Dajun Zeng

AbstractBackgroundThe nonpharmaceutical interventions (NPIs) for contact suppression have been widely used worldwide, which impose harmful burdens on the population and the local economy. The evaluation of alternative NPIs is needed to confront the pandemic with less disruption. By harnessing human mobility data, we develop an agent-based model that can evaluate the efficacies of NPIs with individualized mobility simulations. Based on the model, we propose the data-driven targeted interventions to mitigate the COVID-19 pandemic in Hong Kong without city-wide NPIs.MethodsWe develop a data-driven agent-based model for 7.55 million Hong Kong residents to evaluate the efficacies of various NPIs in the first 80 days of the initial outbreak. The entire territory of Hong Kong is split into 4,905 500m×500m grids. The model can simulate detailed agent interactions based on the demographics data, public facilities and functional buildings, transportation systems, and travel patterns. The general daily human mobility patterns are adopted from Google’s Community Mobility Report. The scenario without any NPIs is set as the baseline. By simulating the epidemic progression and human movement at the individual level, we proposed model-driven targeted interventions, which focus on the surgical testing and quarantine of only a small portion of regions instead of enforcing NPIs in the whole city. The efficacious of common NPIs and the proposed targeted interventions are evaluated by extensive Monte Carlo simulations.FindingsWithout NPIs, we estimate that there are 128,711 total infections (IQR 23,511-70,310) by the end of the 80-day simulation. The proposed targeted intervention averts 95.85% and 94.13% of baseline infections with only 100 (2.04%) and 50 (1.02%) grids being quarantined, respectively. Mild social distancing without testing results in 16,503 total cases (87.18% infections averted), rapid implementation of full lockdown and testing measures (such as the control measure in Mainland China) performs the best, with only 805 infections (99.37% infections averted). Testing-and-quarantining 10%, 20%, 50% of all symptomatic cases with 24-hour/48-hour avert 89.92%/ 87.78%, 95.47%/ 92.42%, and 97.93%/ 95.61% infections, respectively.InterpretationBig data-driven mobility modeling can inform targeted interventions, which are able to effectively contain the COVID-19 outbreak with much lower disruption of the city. It represents a promising approach to sustainable NPIs to help us revive the economy of the city and the world.


Sign in / Sign up

Export Citation Format

Share Document