scholarly journals Characterizing protein protonation microstates using Monte Carlo sampling

2022 ◽  
Author(s):  
Umesh Khaniya ◽  
Junjun Mao ◽  
Rongmei Wei ◽  
Marilyn Gunner

Proteins are polyelectrolytes with acidic or basic amino acids making up ≈25% of the residues. The protonation state of all Asp, Glu, Arg, Lys, His and other protonatable residues, cofactors and ligands define each protonation microstate. As all of these residues will not be fully ionized or neutral, proteins exist in a mixture of microstates. The microstate distribution changes with pH. As the protein environment modifies the proton affinity of each site the distribution may also change in different reaction intermediates or as ligands are bound. Particular protonation microstates may be required for function, while others exist simply because there are many states with similar energy. Here, the protonation microstates generated in Monte Carlo sampling in MCCE are characterized in HEW lysozyme as a function of pH and bacterial photosynthetic reaction centers (RCs) in different reaction intermediates. The lowest energy and highest probability microstates are compared. The ∆G, ∆H and ∆S between the four protonation states of Glu35 and Asp52 in lysozyme are shown to be calculated with reasonable precision. A weighted Pearson correlation analysis identifies coupling between residue protonation states in RCs and how they change when the quinone in the QB site is reduced.

2018 ◽  
Vol 4 (4) ◽  
pp. 50 ◽  
Author(s):  
Klaus Möbius ◽  
Wolfgang Lubitz ◽  
Nicholas Cox ◽  
Anton Savitsky

In this review on advanced biomolecular EPR spectroscopy, which addresses both the EPR and NMR communities, considerable emphasis is put on delineating the complementarity of NMR and EPR regarding the measurement of interactions and dynamics of large molecules embedded in fluid-solution or solid-state environments. Our focus is on the characterization of protein structure, dynamics and interactions, using sophisticated EPR spectroscopy methods. New developments in pulsed microwave and sweepable cryomagnet technology as well as ultrafast electronics for signal data handling and processing have pushed the limits of EPR spectroscopy to new horizons reaching millimeter and sub-millimeter wavelengths and 15 T Zeeman fields. Expanding traditional applications to paramagnetic systems, spin-labeling of biomolecules has become a mainstream multifrequency approach in EPR spectroscopy. In the high-frequency/high-field EPR region, sub-micromolar concentrations of nitroxide spin-labeled molecules are now sufficient to characterize reaction intermediates of complex biomolecular processes. This offers promising analytical applications in biochemistry and molecular biology where sample material is often difficult to prepare in sufficient concentration for NMR characterization. For multifrequency EPR experiments on frozen solutions typical sample volumes are of the order of 250 μL (S-band), 150 μL (X-band), 10 μL (Q-band) and 1 μL (W-band). These are orders of magnitude smaller than the sample volumes required for modern liquid- or solid-state NMR spectroscopy. An important additional advantage of EPR over NMR is the ability to detect and characterize even short-lived paramagnetic reaction intermediates (down to a lifetime of a few ns). Electron–nuclear and electron–electron double-resonance techniques such as electron–nuclear double resonance (ENDOR), ELDOR-detected NMR, PELDOR (DEER) further improve the spectroscopic selectivity for the various magnetic interactions and their evolution in the frequency and time domains. PELDOR techniques applied to frozen-solution samples of doubly spin-labeled proteins allow for molecular distance measurements ranging up to about 100 Å. For disordered frozen-solution samples high-field EPR spectroscopy allows greatly improved orientational selection of the molecules within the laboratory axes reference system by means of the anisotropic electron Zeeman interaction. Single-crystal resolution is approached at the canonical g-tensor orientations—even for molecules with very small g-anisotropies. Unique structural, functional, and dynamic information about molecular systems is thus revealed that can hardly be obtained by other analytical techniques. On the other hand, the limitation to systems with unpaired electrons means that EPR is less widely used than NMR. However, this limitation also means that EPR offers greater specificity, since ordinary chemical solvents and matrices do not give rise to EPR in contrast to NMR spectra. Thus, multifrequency EPR spectroscopy plays an important role in better understanding paramagnetic species such as organic and inorganic radicals, transition metal complexes as found in many catalysts or metalloenzymes, transient species such as light-generated spin-correlated radical pairs and triplets occurring in protein complexes of photosynthetic reaction centers, electron-transfer relays, etc. Special attention is drawn to high-field EPR experiments on photosynthetic reaction centers embedded in specific sugar matrices that enable organisms to survive extreme dryness and heat stress by adopting an anhydrobiotic state. After a more general overview on methods and applications of advanced multifrequency EPR spectroscopy, a few representative examples are reviewed to some detail in two Case Studies: (I) High-field ELDOR-detected NMR (EDNMR) as a general method for electron–nuclear hyperfine spectroscopy of nitroxide radical and transition metal containing systems; (II) High-field ENDOR and EDNMR studies of the Oxygen Evolving Complex (OEC) in Photosystem II, which performs water oxidation in photosynthesis, i.e., the light-driven splitting of water into its elemental constituents, which is one of the most important chemical reactions on Earth.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 99
Author(s):  
Cristian Privat ◽  
Sergio Madurga ◽  
Francesc Mas ◽  
Jaime Rubio-Martínez

Solvent pH is an important property that defines the protonation state of the amino acids and, therefore, modulates the interactions and the conformational space of the biochemical systems. Generally, this thermodynamic variable is poorly considered in Molecular Dynamics (MD) simulations. Fortunately, this lack has been overcome by means of the Constant pH Molecular Dynamics (CPHMD) methods in the recent decades. Several studies have reported promising results from these approaches that include pH in simulations but focus on the prediction of the effective pKa of the amino acids. In this work, we want to shed some light on the CPHMD method and its implementation in the AMBER suitcase from a conformational point of view. To achieve this goal, we performed CPHMD and conventional MD (CMD) simulations of six protonatable amino acids in a blocked tripeptide structure to compare the conformational sampling and energy distributions of both methods. The results reveal strengths and weaknesses of the CPHMD method in the implementation of AMBER18 version. The change of the protonation state according to the chemical environment is presumably an improvement in the accuracy of the simulations. However, the simulations of the deprotonated forms are not consistent, which is related to an inaccurate assignment of the partial charges of the backbone atoms in the CPHMD residues. Therefore, we recommend the CPHMD methods of AMBER program but pointing out the need to compare structural properties with experimental data to bring reliability to the conformational sampling of the simulations.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jingheng Shu ◽  
Quanyi Wang ◽  
Desmond Y.R. Chong ◽  
Zhan Liu

AbstractLoadings in temporomandibular joints (TMJs) are essential factors in dysfunction of TMJs, and are barely noticed in treatment of maxillofacial deformity. The only approach, which can access stresses in TMJs, could expend day’s even weeks to complete. The objective of the study was to compare the differences of the morphological and biomechanical characteristics of TMJs between asymptomatic subjects and patients with mandibular prognathism, and to preliminarily analyze the connection between the two kinds of characteristics. Morphological measurements and finite element analysis (FEA) corresponding to the central occlusion were carried out on the models of 13 mandibular prognathism patients and 10 asymptomatic subjects. The results indicated that the joint spaces of the patients were significantly lower than those of the asymptomatic subjects, while the stresses of patients were significantly greater than those of asymptomatic subjects, especially the stresses on discs. The results of Pearson correlation analysis showed that weak or no correlations were found between the von Mises stresses and the joint spaces of asymptomatic subjects, while moderate, even high correlations were found in the patients. Thus, it was shown to be a feasible way to use morphological parameters to predict the internal loads of TMJs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yin Song ◽  
Riley Sechrist ◽  
Hoang H. Nguyen ◽  
William Johnson ◽  
Darius Abramavicius ◽  
...  

AbstractPhotochemical reaction centers are the engines that drive photosynthesis. The reaction center from heliobacteria (HbRC) has been proposed to most closely resemble the common ancestor of photosynthetic reaction centers, motivating a detailed understanding of its structure-function relationship. The recent elucidation of the HbRC crystal structure motivates advanced spectroscopic studies of its excitonic structure and charge separation mechanism. We perform multispectral two-dimensional electronic spectroscopy of the HbRC and corresponding numerical simulations, resolving the electronic structure and testing and refining recent excitonic models. Through extensive examination of the kinetic data by lifetime density analysis and global target analysis, we reveal that charge separation proceeds via a single pathway in which the distinct A0 chlorophyll a pigment is the primary electron acceptor. In addition, we find strong delocalization of the charge separation intermediate. Our findings have general implications for the understanding of photosynthetic charge separation mechanisms, and how they might be tuned to achieve different functional goals.


Sign in / Sign up

Export Citation Format

Share Document