scholarly journals Single-cell network biology characterizes cell-type gene regulation for drug repurposing and phenotype prediction in Alzheimer's disease

2022 ◽  
Author(s):  
Chirag Gupta ◽  
Jielin Xu ◽  
Ting Jin ◽  
Saniya Khullar ◽  
Xiaoyu Liu ◽  
...  

Dysregulation of gene expression in Alzheimer's disease (AD) remains elusive, especially at the cell type level. Gene regulatory network, a key molecular mechanism linking transcription factors (TFs) and regulatory elements to govern target gene expression, can change across cell types in the human brain and thus serve as a model for studying gene dysregulation in AD. However, it is still challenging to understand how cell type networks work abnormally under AD. To address this, we integrated single-cell multi-omics data and predicted the gene regulatory networks in AD and control for four major cell types, excitatory and inhibitory neurons, microglia and oligodendrocytes. Importantly, we applied network biology approaches to analyze the changes of network characteristics across these cell types, and between AD and control. For instance, many hub TFs target different genes between AD and control (rewiring). Also, these networks show strong hierarchical structures in which top TFs (master regulators) are largely common across cell types, whereas different TFs operate at the middle levels in some cell types (e.g., microglia). The regulatory logics of enriched network motifs (e.g., feed-forward loops) further uncover cell-type-specific TF-TF cooperativities in gene regulation. The cell type networks are highly modular. Several network modules with cell-type-specific expression changes in AD pathology are enriched with AD-risk genes and putative targets of approved and pending AD drugs, suggesting possible cell-type genomic medicine in AD. Finally, using the cell type gene regulatory networks, we developed machine learning models to classify and prioritize additional AD genes. We found that top prioritized genes predict clinical phenotypes (e.g., cognitive impairment). Overall, this single-cell network biology analysis provides a comprehensive map linking genes, regulatory networks, cell types and drug targets and reveals mechanisms on cell-type gene dyregulation in AD.

2020 ◽  
Author(s):  
Andreas Fønss Møller ◽  
Kedar Nath Natarajan

AbstractRecent single-cell RNA-sequencing atlases have surveyed and identified major cell-types across different mouse tissues. Here, we computationally reconstruct gene regulatory networks from 3 major mouse cell atlases to capture functional regulators critical for cell identity, while accounting for a variety of technical differences including sampled tissues, sequencing depth and author assigned cell-type labels. Extracting the regulatory crosstalk from mouse atlases, we identify and distinguish global regulons active in multiple cell-types from specialised cell-type specific regulons. We demonstrate that regulon activities accurately distinguish individual cell types, despite differences between individual atlases. We generate an integrated network that further uncovers regulon modules with coordinated activities critical for cell-types, and validate modules using available experimental data. Inferring regulatory networks during myeloid differentiation from wildtype and Irf8 KO cells, we uncover functional contribution of Irf8 regulon activity and composition towards monocyte lineage. Our analysis provides an avenue to further extract and integrate the regulatory crosstalk from single-cell expression data.SummaryIntegrated single-cell gene regulatory network from three mouse cell atlases captures global and cell-type specific regulatory modules and crosstalk, important for cellular identity.


2020 ◽  
Vol 52 (11) ◽  
pp. 1798-1808
Author(s):  
Junha Cha ◽  
Insuk Lee

AbstractUnderstanding cellular heterogeneity is the holy grail of biology and medicine. Cells harboring identical genomes show a wide variety of behaviors in multicellular organisms. Genetic circuits underlying cell-type identities will facilitate the understanding of the regulatory programs for differentiation and maintenance of distinct cellular states. Such a cell-type-specific gene network can be inferred from coregulatory patterns across individual cells. Conventional methods of transcriptome profiling using tissue samples provide only average signals of diverse cell types. Therefore, reconstructing gene regulatory networks for a particular cell type is not feasible with tissue-based transcriptome data. Recently, single-cell omics technology has emerged and enabled the capture of the transcriptomic landscape of every individual cell. Although single-cell gene expression studies have already opened up new avenues, network biology using single-cell transcriptome data will further accelerate our understanding of cellular heterogeneity. In this review, we provide an overview of single-cell network biology and summarize recent progress in method development for network inference from single-cell RNA sequencing (scRNA-seq) data. Then, we describe how cell-type-specific gene networks can be utilized to study regulatory programs specific to disease-associated cell types and cellular states. Moreover, with scRNA data, modeling personal or patient-specific gene networks is feasible. Therefore, we also introduce potential applications of single-cell network biology for precision medicine. We envision a rapid paradigm shift toward single-cell network analysis for systems biology in the near future.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael W. Dorrity ◽  
Cristina M. Alexandre ◽  
Morgan O. Hamm ◽  
Anna-Lena Vigil ◽  
Stanley Fields ◽  
...  

AbstractThe scarcity of accessible sites that are dynamic or cell type-specific in plants may be due in part to tissue heterogeneity in bulk studies. To assess the effects of tissue heterogeneity, we apply single-cell ATAC-seq to Arabidopsis thaliana roots and identify thousands of differentially accessible sites, sufficient to resolve all major cell types of the root. We find that the entirety of a cell’s regulatory landscape and its transcriptome independently capture cell type identity. We leverage this shared information on cell identity to integrate accessibility and transcriptome data to characterize developmental progression, endoreduplication and cell division. We further use the combined data to characterize cell type-specific motif enrichments of transcription factor families and link the expression of family members to changing accessibility at specific loci, resolving direct and indirect effects that shape expression. Our approach provides an analytical framework to infer the gene regulatory networks that execute plant development.


2020 ◽  
Author(s):  
Quan Xu ◽  
Georgios Georgiou ◽  
Gert Jan C. Veenstra ◽  
Huiqing Zhou ◽  
Simon J. van Heeringen

AbstractProper cell fate determination is largely orchestrated by complex gene regulatory networks centered around transcription factors. However, experimental elucidation of key transcription factors that drive cellular identity is currently often intractable. Here, we present ANANSE (ANalysis Algorithm for Networks Specified by Enhancers), a network-based method that exploits enhancer-encoded regulatory information to identify the key transcription factors in cell fate determination. As cell type-specific transcription factors predominantly bind to enhancers, we use regulatory networks based on enhancer properties to prioritize transcription factors. First, we predict genome-wide binding profiles of transcription factors in various cell types using enhancer activity and transcription factor binding motifs. Subsequently, applying these inferred binding profiles, we construct cell type-specific gene regulatory networks, and then predict key transcription factors controlling cell fate conversions using differential gene networks between cell types. This method outperforms existing approaches in correctly predicting major transcription factors previously identified to be sufficient for trans-differentiation. Finally, we apply ANANSE to define an atlas of key transcription factors in 18 normal human tissues. In conclusion, we present a ready-to-implement computational tool for efficient prediction of transcription factors in cell fate determination and to study transcription factor-mediated regulatory mechanisms. ANANSE is freely available at https://github.com/vanheeringen-lab/ANANSE.


Cell Reports ◽  
2020 ◽  
Vol 33 (10) ◽  
pp. 108472
Author(s):  
Zhaoning Wang ◽  
Miao Cui ◽  
Akansha M. Shah ◽  
Wei Tan ◽  
Ning Liu ◽  
...  

2020 ◽  
Vol 3 (11) ◽  
pp. e202000658 ◽  
Author(s):  
Andreas Fønss Møller ◽  
Kedar Nath Natarajan

Recent single-cell RNA-sequencing atlases have surveyed and identified major cell types across different mouse tissues. Here, we computationally reconstruct gene regulatory networks from three major mouse cell atlases to capture functional regulators critical for cell identity, while accounting for a variety of technical differences, including sampled tissues, sequencing depth, and author assigned cell type labels. Extracting the regulatory crosstalk from mouse atlases, we identify and distinguish global regulons active in multiple cell types from specialised cell type–specific regulons. We demonstrate that regulon activities accurately distinguish individual cell types, despite differences between individual atlases. We generate an integrated network that further uncovers regulon modules with coordinated activities critical for cell types, and validate modules using available experimental data. Inferring regulatory networks during myeloid differentiation from wild-type and Irf8 KO cells, we uncover functional contribution of Irf8 regulon activity and composition towards monocyte lineage. Our analysis provides an avenue to further extract and integrate the regulatory crosstalk from single-cell expression data.


2020 ◽  
Author(s):  
Larisa M. Soto ◽  
Juan P. Bernal-Tamayo ◽  
Robert Lehmann ◽  
Subash Balsamy ◽  
Xabier Martinez-de-Morentin ◽  
...  

AbstractRecent progress in single-cell genomics has generated multiple tools for cell clustering, annotation, and trajectory inference; yet, inferring their associated regulatory mechanisms is unresolved. Here we present scMomentum, a model-based data-driven formulation to predict gene regulatory networks and energy landscapes from single-cell transcriptomic data without requiring temporal or perturbation experiments. scMomentum provides significant advantages over existing methods with respect to computational efficiency, scalability, network structure, and biological application.AvailabilityscMomentum is available as a Python package at https://github.com/larisa-msoto/scMomentum.git


Cell Reports ◽  
2021 ◽  
Vol 35 (8) ◽  
pp. 109211
Author(s):  
Zhaoning Wang ◽  
Miao Cui ◽  
Akansha M. Shah ◽  
Wei Tan ◽  
Ning Liu ◽  
...  

2020 ◽  
Author(s):  
Mohit Goyal ◽  
Guillermo Serrano ◽  
Ilan Shomorony ◽  
Mikel Hernaez ◽  
Idoia Ochoa

AbstractSingle-cell RNA-seq is a powerful tool in the study of the cellular composition of different tissues and organisms. A key step in the analysis pipeline is the annotation of cell-types based on the expression of specific marker genes. Since manual annotation is labor-intensive and does not scale to large datasets, several methods for automated cell-type annotation have been proposed based on supervised learning. However, these methods generally require feature extraction and batch alignment prior to classification, and their performance may become unreliable in the presence of cell-types with very similar transcriptomic profiles, such as differentiating cells. We propose JIND, a framework for automated cell-type identification based on neural networks that directly learns a low-dimensional representation (latent code) in which cell-types can be reliably determined. To account for batch effects, JIND performs a novel asymmetric alignment in which the transcriptomic profile of unseen cells is mapped onto the previously learned latent space, hence avoiding the need of retraining the model whenever a new dataset becomes available. JIND also learns cell-type-specific confidence thresholds to identify and reject cells that cannot be reliably classified. We show on datasets with and without batch effects that JIND classifies cells more accurately than previously proposed methods while rejecting only a small proportion of cells. Moreover, JIND batch alignment is parallelizable, being more than five or six times faster than Seurat integration. Availability: https://github.com/mohit1997/JIND.


2019 ◽  
Author(s):  
Matthew N. Bernstein ◽  
Zhongjie Ma ◽  
Michael Gleicher ◽  
Colin N. Dewey

SummaryCell type annotation is a fundamental task in the analysis of single-cell RNA-sequencing data. In this work, we present CellO, a machine learning-based tool for annotating human RNA-seq data with the Cell Ontology. CellO enables accurate and standardized cell type classification by considering the rich hierarchical structure of known cell types, a source of prior knowledge that is not utilized by existing methods. Furthemore, CellO comes pre-trained on a novel, comprehensive dataset of human, healthy, untreated primary samples in the Sequence Read Archive, which to the best of our knowledge, is the most diverse curated collection of primary cell data to date. CellO’s comprehensive training set enables it to run out-of-the-box on diverse cell types and achieves superior or competitive performance when compared to existing state-of-the-art methods. Lastly, CellO’s linear models are easily interpreted, thereby enabling exploration of cell type-specific expression signatures across the ontology. To this end, we also present the CellO Viewer: a web application for exploring CellO’s models across the ontology.HighlightWe present CellO, a tool for hierarchically classifying cell type from single-cell RNA-seq data against the graph-structured Cell OntologyCellO is pre-trained on a comprehensive dataset comprising nearly all bulk RNA-seq primary cell samples in the Sequence Read ArchiveCellO achieves superior or comparable performance with existing methods while featuring a more comprehensive pre-packaged training setCellO is built with easily interpretable models which we expose through a novel web application, the CellO Viewer, for exploring cell type-specific signatures across the Cell OntologyGraphical Abstract


Sign in / Sign up

Export Citation Format

Share Document