scholarly journals JIND: Joint Integration and Discrimination for Automated Single-Cell Annotation

2020 ◽  
Author(s):  
Mohit Goyal ◽  
Guillermo Serrano ◽  
Ilan Shomorony ◽  
Mikel Hernaez ◽  
Idoia Ochoa

AbstractSingle-cell RNA-seq is a powerful tool in the study of the cellular composition of different tissues and organisms. A key step in the analysis pipeline is the annotation of cell-types based on the expression of specific marker genes. Since manual annotation is labor-intensive and does not scale to large datasets, several methods for automated cell-type annotation have been proposed based on supervised learning. However, these methods generally require feature extraction and batch alignment prior to classification, and their performance may become unreliable in the presence of cell-types with very similar transcriptomic profiles, such as differentiating cells. We propose JIND, a framework for automated cell-type identification based on neural networks that directly learns a low-dimensional representation (latent code) in which cell-types can be reliably determined. To account for batch effects, JIND performs a novel asymmetric alignment in which the transcriptomic profile of unseen cells is mapped onto the previously learned latent space, hence avoiding the need of retraining the model whenever a new dataset becomes available. JIND also learns cell-type-specific confidence thresholds to identify and reject cells that cannot be reliably classified. We show on datasets with and without batch effects that JIND classifies cells more accurately than previously proposed methods while rejecting only a small proportion of cells. Moreover, JIND batch alignment is parallelizable, being more than five or six times faster than Seurat integration. Availability: https://github.com/mohit1997/JIND.

2020 ◽  
Author(s):  
Songwei Ge ◽  
Haohan Wang ◽  
Amir Alavi ◽  
Eric Xing ◽  
Ziv Bar-Joseph

AbstractDimensionality reduction is an important first step in the analysis of single cell RNA-seq (scRNA-seq) data. In addition to enabling the visualization of the profiled cells, such representations are used by many downstream analyses methods ranging from pseudo-time reconstruction to clustering to alignment of scRNA-seq data from different experiments, platforms, and labs. Both supervised and unsupervised methods have been proposed to reduce the dimension of scRNA-seq. However, all methods to date are sensitive to batch effects. When batches correlate with cell types, as is often the case, their impact can lead to representations that are batch rather than cell type specific. To overcome this we developed a domain adversarial neural network model for learning a reduced dimension representation of scRNA-seq data. The adversarial model tries to simultaneously optimize two objectives. The first is the accuracy of cell type assignment and the second is the inability to distinguish the batch (domain). We tested the method by using the resulting representation to align several different datasets. As we show, by overcoming batch effects our method was able to correctly separate cell types, improving on several prior methods suggested for this task. Analysis of the top features used by the network indicates that by taking the batch impact into account, the reduced representation is much better able to focus on key genes for each cell type.


2021 ◽  
Vol 4 (6) ◽  
pp. e202001004
Author(s):  
Almut Lütge ◽  
Joanna Zyprych-Walczak ◽  
Urszula Brykczynska Kunzmann ◽  
Helena L Crowell ◽  
Daniela Calini ◽  
...  

A key challenge in single-cell RNA-sequencing (scRNA-seq) data analysis is batch effects that can obscure the biological signal of interest. Although there are various tools and methods to correct for batch effects, their performance can vary. Therefore, it is important to understand how batch effects manifest to adjust for them. Here, we systematically explore batch effects across various scRNA-seq datasets according to magnitude, cell type specificity, and complexity. We developed a cell-specific mixing score (cms) that quantifies mixing of cells from multiple batches. By considering distance distributions, the score is able to detect local batch bias as well as differentiate between unbalanced batches and systematic differences between cells of the same cell type. We compare metrics in scRNA-seq data using real and synthetic datasets and whereas these metrics target the same question and are used interchangeably, we find differences in scalability, sensitivity, and ability to handle differentially abundant cell types. We find that cell-specific metrics outperform cell type–specific and global metrics and recommend them for both method benchmarks and batch exploration.


2019 ◽  
Author(s):  
Matthew N. Bernstein ◽  
Zhongjie Ma ◽  
Michael Gleicher ◽  
Colin N. Dewey

SummaryCell type annotation is a fundamental task in the analysis of single-cell RNA-sequencing data. In this work, we present CellO, a machine learning-based tool for annotating human RNA-seq data with the Cell Ontology. CellO enables accurate and standardized cell type classification by considering the rich hierarchical structure of known cell types, a source of prior knowledge that is not utilized by existing methods. Furthemore, CellO comes pre-trained on a novel, comprehensive dataset of human, healthy, untreated primary samples in the Sequence Read Archive, which to the best of our knowledge, is the most diverse curated collection of primary cell data to date. CellO’s comprehensive training set enables it to run out-of-the-box on diverse cell types and achieves superior or competitive performance when compared to existing state-of-the-art methods. Lastly, CellO’s linear models are easily interpreted, thereby enabling exploration of cell type-specific expression signatures across the ontology. To this end, we also present the CellO Viewer: a web application for exploring CellO’s models across the ontology.HighlightWe present CellO, a tool for hierarchically classifying cell type from single-cell RNA-seq data against the graph-structured Cell OntologyCellO is pre-trained on a comprehensive dataset comprising nearly all bulk RNA-seq primary cell samples in the Sequence Read ArchiveCellO achieves superior or comparable performance with existing methods while featuring a more comprehensive pre-packaged training setCellO is built with easily interpretable models which we expose through a novel web application, the CellO Viewer, for exploring cell type-specific signatures across the Cell OntologyGraphical Abstract


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254194
Author(s):  
Hong-Tae Park ◽  
Woo Bin Park ◽  
Suji Kim ◽  
Jong-Sung Lim ◽  
Gyoungju Nah ◽  
...  

Mycobacterium avium subsp. paratuberculosis (MAP) is a causative agent of Johne’s disease, which is a chronic and debilitating disease in ruminants. MAP is also considered to be a possible cause of Crohn’s disease in humans. However, few studies have focused on the interactions between MAP and human macrophages to elucidate the pathogenesis of Crohn’s disease. We sought to determine the initial responses of human THP-1 cells against MAP infection using single-cell RNA-seq analysis. Clustering analysis showed that THP-1 cells were divided into seven different clusters in response to phorbol-12-myristate-13-acetate (PMA) treatment. The characteristics of each cluster were investigated by identifying cluster-specific marker genes. From the results, we found that classically differentiated cells express CD14, CD36, and TLR2, and that this cell type showed the most active responses against MAP infection. The responses included the expression of proinflammatory cytokines and chemokines such as CCL4, CCL3, IL1B, IL8, and CCL20. In addition, the Mreg cell type, a novel cell type differentiated from THP-1 cells, was discovered. Thus, it is suggested that different cell types arise even when the same cell line is treated under the same conditions. Overall, analyzing gene expression patterns via scRNA-seq classification allows a more detailed observation of the response to infection by each cell type.


2018 ◽  
Author(s):  
Wennan Chang ◽  
Changlin Wan ◽  
Xiaoyu Lu ◽  
Szu-wei Tu ◽  
Yifan Sun ◽  
...  

AbstractWe developed a novel deconvolution method, namely Inference of Cell Types and Deconvolution (ICTD) that addresses the fundamental issue of identifiability and robustness in current tissue data deconvolution problem. ICTD provides substantially new capabilities for omics data based characterization of a tissue microenvironment, including (1) maximizing the resolution in identifying resident cell and sub types that truly exists in a tissue, (2) identifying the most reliable marker genes for each cell type, which are tissue and data set specific, (3) handling the stability problem with co-linear cell types, (4) co-deconvoluting with available matched multi-omics data, and (5) inferring functional variations specific to one or several cell types. ICTD is empowered by (i) rigorously derived mathematical conditions of identifiable cell type and cell type specific functions in tissue transcriptomics data and (ii) a semi supervised approach to maximize the knowledge transfer of cell type and functional marker genes identified in single cell or bulk cell data in the analysis of tissue data, and (iii) a novel unsupervised approach to minimize the bias brought by training data. Application of ICTD on real and single cell simulated tissue data validated that the method has consistently good performance for tissue data coming from different species, tissue microenvironments, and experimental platforms. Other than the new capabilities, ICTD outperformed other state-of-the-art devolution methods on prediction accuracy, the resolution of identifiable cell, detection of unknown sub cell types, and assessment of cell type specific functions. The premise of ICTD also lies in characterizing cell-cell interactions and discovering cell types and prognostic markers that are predictive of clinical outcomes.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Qingnan Liang ◽  
Rachayata Dharmat ◽  
Leah Owen ◽  
Akbar Shakoor ◽  
Yumei Li ◽  
...  

AbstractSingle-cell RNA-seq is a powerful tool in decoding the heterogeneity in complex tissues by generating transcriptomic profiles of the individual cell. Here, we report a single-nuclei RNA-seq (snRNA-seq) transcriptomic study on human retinal tissue, which is composed of multiple cell types with distinct functions. Six samples from three healthy donors are profiled and high-quality RNA-seq data is obtained for 5873 single nuclei. All major retinal cell types are observed and marker genes for each cell type are identified. The gene expression of the macular and peripheral retina is compared to each other at cell-type level. Furthermore, our dataset shows an improved power for prioritizing genes associated with human retinal diseases compared to both mouse single-cell RNA-seq and human bulk RNA-seq results. In conclusion, we demonstrate that obtaining single cell transcriptomes from human frozen tissues can provide insight missed by either human bulk RNA-seq or animal models.


2018 ◽  
Author(s):  
Xuran Wang ◽  
Jihwan Park ◽  
Katalin Susztak ◽  
Nancy R. Zhang ◽  
Mingyao Li

AbstractWe present MuSiC, a method that utilizes cell-type specific gene expression from single-cell RNA sequencing (RNA-seq) data to characterize cell type compositions from bulk RNA-seq data in complex tissues. When applied to pancreatic islet and whole kidney expression data in human, mouse, and rats, MuSiC outperformed existing methods, especially for tissues with closely related cell types. MuSiC enables characterization of cellular heterogeneity of complex tissues for identification of disease mechanisms.


2019 ◽  
Author(s):  
Yuchen Yang ◽  
Gang Li ◽  
Huijun Qian ◽  
Kirk C. Wilhelmsen ◽  
Yin Shen ◽  
...  

AbstractBatch effect correction has been recognized to be indispensable when integrating single-cell RNA sequencing (scRNA-seq) data from multiple batches. State-of-the-art methods ignore single-cell cluster label information, but such information can improve effectiveness of batch effect correction, particularly under realistic scenarios where biological differences are not orthogonal to batch effects. To address this issue, we propose SMNN for batch effect correction of scRNA-seq data via supervised mutual nearest neighbor detection. Our extensive evaluations in simulated and real datasets show that SMNN provides improved merging within the corresponding cell types across batches, leading to reduced differentiation across batches over MNN, Seurat v3, and LIGER. Furthermore, SMNN retains more cell type-specific features, partially manifested by differentially expressed genes identified between cell types after SMNN correction being biologically more relevant, with precision improving by up to 841%.Key PointsBatch effect correction has been recognized to be critical when integrating scRNA-seq data from multiple batches due to systematic differences in time points, generating laboratory and/or handling technician(s), experimental protocol, and/or sequencing platform.Existing batch effect correction methods that leverages information from mutual nearest neighbors across batches (for example, implemented in SC3 or Seurat) ignore cell type information and suffer from potentially mismatching single cells from different cell types across batches, which would lead to undesired correction results, especially under the scenario where variation from batch effects is non-negligible compared with biological effects.To address this critical issue, here we present SMNN, a supervised machine learning method that first takes cluster/cell-type label information from users or inferred from scRNA-seq clustering, and then searches mutual nearest neighbors within each cell type instead of global searching.Our SMNN method shows clear advantages over three state-of-the-art batch effect correction methods and can better mix cells of the same cell type across batches and more effectively recover cell-type specific features, in both simulations and real datasets.


2021 ◽  
Author(s):  
Wenjing Ma ◽  
Sumeet Sharma ◽  
Peng Jin ◽  
Shannon L Gourley ◽  
Zhaohui Qin

The rapid proliferation of single-cell RNA-sequencing (scRNA-seq) datasets have revealed cell heterogeneity at unprecedented scales. Several deconvolution methods have been developed to decompose bulk experiments to reveal cell type contributions. However, these methods lack power in identifying the accurate cell type composition when having a considerable amount of sub-cell types in the reference dataset. Here, we present LRcell, a R Bioconductor package (http://bioconductor.org/packages/release/bioc/html/LRcell.html) aiming to identify specific sub-cell type(s) that drives the changes observed in a bulk RNA-seq differential gene expression experiment. In addition, LRcell provides pre-embedded marker genes computed from putative single-cell RNA-seq experiments as options to execute the analyses.


2021 ◽  
Author(s):  
Risa Karakida Kawaguchi ◽  
Ziqi Tang ◽  
Stephan Fischer ◽  
Rohit Tripathy ◽  
Peter K. Koo ◽  
...  

Background: Single-cell Assay for Transposase Accessible Chromatin using sequencing (scATAC-seq) measures genome-wide chromatin accessibility for the discovery of cell-type specific regulatory networks. ScATAC-seq combined with single-cell RNA sequencing (scRNA-seq) offers important avenues for ongoing research, such as novel cell-type specific activation of enhancer and transcription factor binding sites as well as chromatin changes specific to cell states. On the other hand, scATAC-seq data is known to be challenging to interpret due to its high number of zeros as well as the heterogeneity derived from different protocols. Because of the stochastic lack of marker gene activities, cell type identification by scATAC-seq remains difficult even at a cluster level. Results: In this study, we exploit reference knowledge obtained from external scATAC-seq or scRNA-seq datasets to define existing cell types and uncover the genomic regions which drive cell-type specific gene regulation. To investigate the robustness of existing cell-typing methods, we collected 7 scATAC-seq datasets targeting mouse brain for a meta-analytic comparison of neuronal cell-type annotation, including a reference atlas generated by the BRAIN Initiative Cell Census Network (BICCN). By comparing the area under the receiver operating characteristics curves (AUROCs) for the three major cell types (inhibitory, excitatory, and non-neuronal cells), cell-typing performance by single markers is found to be highly variable even for known marker genes due to study-specific biases. However, the signal aggregation of a large and redundant marker gene set, optimized via multiple scRNA-seq data, achieves the highest cell-typing performances among 5 existing marker gene sets, from the individual cell to cluster level. That gene set also shows a high consistency with the cluster-specific genes from inhibitory subtypes in two well-annotated datasets, suggesting applicability to rare cell types. Next, we demonstrate a comprehensive assessment of scATAC-seq cell typing using exhaustive combinations of the marker gene sets with supervised learning methods including machine learning classifiers and joint clustering methods. Our results show that the combinations using robust marker gene sets systematically ranked at the top, not only with model based prediction using a large reference data but also with a simple summation of expression strengths across markers. To demonstrate the utility of this robust cell typing approach, we trained a deep neural network to predict chromatin accessibility in each subtype using only DNA sequence. Through model interpretation methods, we identify key motifs enriched about robust gene sets for each neuronal subtype. Conclusions: Through the meta-analytic evaluation of scATAC-seq cell-typing methods, we develop a novel method set to exploit the BICCN reference atlas. Our study strongly supports the value of robust marker gene selection as a feature selection tool and cross-dataset comparison between scATAC-seq datasets to improve alignment of scATAC-seq to known biology. With this novel, high quality epigenetic data, genomic analysis of regulatory regions can reveal sequence motifs that drive cell type-specific regulatory programs.


Sign in / Sign up

Export Citation Format

Share Document