cell ontology
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 12)

H-INDEX

4
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sheng Wang ◽  
Angela Oliveira Pisco ◽  
Aaron McGeever ◽  
Maria Brbic ◽  
Marinka Zitnik ◽  
...  

AbstractSingle cell technologies are rapidly generating large amounts of data that enables us to understand biological systems at single-cell resolution. However, joint analysis of datasets generated by independent labs remains challenging due to a lack of consistent terminology to describe cell types. Here, we present OnClass, an algorithm and accompanying software for automatically classifying cells into cell types that are part of the controlled vocabulary that forms the Cell Ontology. A key advantage of OnClass is its capability to classify cells into cell types not present in the training data because it uses the Cell Ontology graph to infer cell type relationships. Furthermore, OnClass can be used to identify marker genes for all the cell ontology categories, regardless of whether the cell types are present or absent in the training data, suggesting that OnClass goes beyond a simple annotation tool for single cell datasets, being the first algorithm capable to identify marker genes specific to all terms of the Cell Ontology and offering the possibility of refining the Cell Ontology using a data-centric approach.


2021 ◽  
Author(s):  
Kenneth C. Smith ◽  
Daniel G. Chawla ◽  
Bhavjinder K. Dhillon ◽  
Zhou Ji ◽  
Randi Vita ◽  
...  

AbstractRecent advances in high-throughput experiments and systems biology approaches have resulted in hundreds of publications identifying “immune signatures”. Unfortunately, these are often described within text, figures, or tables in a format not amenable to computational processing, thus severely hampering our ability to fully exploit this information. Here we present a data model to represent immune signatures, along with the Human Immunology Project Consortium (HIPC) Dashboard (www.hipc-dashboard.org), a web-enabled application to facilitate signature access and querying. The data model captures the biological response components (e.g., genes, proteins or cell types or metabolites) and metadata describing the context under which the signature was identified using standardized terms from established resources (e.g., HGNC, Protein Ontology, Cell Ontology). We have manually curated a collection of >600 immune signatures from >60 published studies profiling human vaccination responses for the current release. The system will aid in building a broader understanding of the human immune response to stimuli by enabling researchers to easily access and interrogate published immune signatures.


Author(s):  
Javier Cabau-Laporta ◽  
Alex M. Ascensión ◽  
Mikel Arrospide-Elgarresta ◽  
Daniela Gerovska ◽  
Marcos J. Araúzo-Bravo

High-throughput cell-data technologies such as single-cell RNA-seq create a demand for algorithms for automatic cell classification and characterization. There exist several cell classification ontologies with complementary information. However, one needs to merge them to synergistically combine their information. The main difficulty in merging is to match the ontologies since they use different naming conventions. Therefore, we developed an algorithm that merges ontologies by integrating the name matching between class label names with the structure mapping between the ontology elements based on graph convolution. Since the structure mapping is a time consuming process, we designed two methods to perform the graph convolution: vectorial structure matching and constraint-based structure matching. To perform the vectorial structure matching, we designed a general method to calculate the similarities between vectors of different lengths for different metrics. Additionally, we adapted the slower Blondel method to work for structure matching. We implemented our algorithms into FOntCell, a software module in Python for efficient automatic parallel-computed merging/fusion of ontologies in the same or similar knowledge domains. FOntCell can unify dispersed knowledge from one domain into a unique ontology in OWL format and iteratively reuse it to continuously adapt ontologies with new data endlessly produced by data-driven classification methods, such as of the Human Cell Atlas. To navigate easily across the merged ontologies, it generates HTML files with tabulated and graphic summaries, and interactive circular Directed Acyclic Graphs. We used FOntCell to merge the CELDA, LifeMap and LungMAP Human Anatomy cell ontologies into a comprehensive cell ontology. We compared FOntCell with tools used for the alignment of mouse and human anatomy ontologies task proposed by the Ontology Alignment Evaluation Initiative (OAEI) and found that the Fβ alignment accuracies of FOntCell are above the geometric mean of the other tools; more importantly, it outperforms significantly the best OAEI tools in cell ontology alignment in terms of Fβ alignment accuracies.


iScience ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 101913
Author(s):  
Matthew N. Bernstein ◽  
Zhongjie Ma ◽  
Michael Gleicher ◽  
Colin N. Dewey

2020 ◽  
Vol 49 (D1) ◽  
pp. D104-D111
Author(s):  
Semyon Kolmykov ◽  
Ivan Yevshin ◽  
Mikhail Kulyashov ◽  
Ruslan Sharipov ◽  
Yury Kondrakhin ◽  
...  

Abstract The Gene Transcription Regulation Database (GTRD; http://gtrd.biouml.org/) contains uniformly annotated and processed NGS data related to gene transcription regulation: ChIP-seq, ChIP-exo, DNase-seq, MNase-seq, ATAC-seq and RNA-seq. With the latest release, the database has reached a new level of data integration. All cell types (cell lines and tissues) presented in the GTRD were arranged into a dictionary and linked with different ontologies (BRENDA, Cell Ontology, Uberon, Cellosaurus and Experimental Factor Ontology) and with related experiments in specialized databases on transcription regulation (FANTOM5, ENCODE and GTEx). The updated version of the GTRD provides an integrated view of transcription regulation through a dedicated web interface with advanced browsing and search capabilities, an integrated genome browser, and table reports by cell types, transcription factors, and genes of interest.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Chao Yang ◽  
Jason R Siebert ◽  
Robert Burns ◽  
Yongwei Zheng ◽  
Ao Mei ◽  
...  

The transcriptional activation and repression during NK cell ontology are poorly understood. Here, using single-cell RNA-sequencing, we reveal a novel role for T-bet in suppressing the immature gene signature during murine NK cell development. Based on transcriptome, we identified five distinct NK cell clusters and define their relative developmental maturity in the bone marrow. Transcriptome-based machine-learning classifiers revealed that half of the mTORC2-deficient NK cells belongs to the least mature NK cluster. Mechanistically, loss of mTORC2 results in an increased expression of signature genes representing immature NK cells. Since mTORC2 regulates the expression of T-bet through AktS473-FoxO1 axis, we further characterized the T-bet-deficient NK cells and found an augmented immature transcriptomic signature. Moreover, deletion of Foxo1 restores the expression of T-bet and corrects the abnormal expression of immature NK genes. Collectively, our study reveals a novel role for mTORC2-AktS473-FoxO1-T-bet axis in suppressing the transcriptional signature of immature NK cells.


2019 ◽  
Author(s):  
Sheng Wang ◽  
Angela Oliveira Pisco ◽  
Aaron McGeever ◽  
Maria Brbic ◽  
Marinka Zitnik ◽  
...  

AbstractSingle cell technologies have rapidly generated an unprecedented amount of data that enables us to understand biological systems at single-cell resolution. However, joint analysis of datasets generated by independent labs remains challenging due to a lack of consistent terminology to describe cell types. Here, we present OnClass, an algorithm and accompanying software for automatically classifying cells into cell types part of the controlled vocabulary that forms the Cell Ontology. A key advantage of OnClass is its capability to classify cells into cell types not present in the training data because it uses the Cell Ontology graph to infer cell type relationships. Furthermore, OnClass can be used to identify marker genes for all the cell ontology categories, independently of whether the cells types are present or absent in the training data, suggesting that OnClass can be used not only as an annotation tool for single cell datasets but also as an algorithm to identify marker genes specific to each term of the Cell Ontology, offering the possibility of refining the Cell Ontology using a data-centric approach.


GigaScience ◽  
2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Yun-Ching Chen ◽  
Abhilash Suresh ◽  
Chingiz Underbayev ◽  
Clare Sun ◽  
Komudi Singh ◽  
...  

AbstractBackgroundIn single-cell RNA-sequencing analysis, clustering cells into groups and differentiating cell groups by differentially expressed (DE) genes are 2 separate steps for investigating cell identity. However, the ability to differentiate between cell groups could be affected by clustering. This interdependency often creates a bottleneck in the analysis pipeline, requiring researchers to repeat these 2 steps multiple times by setting different clustering parameters to identify a set of cell groups that are more differentiated and biologically relevant.FindingsTo accelerate this process, we have developed IKAP—an algorithm to identify major cell groups and improve differentiating cell groups by systematically tuning parameters for clustering. We demonstrate that, with default parameters, IKAP successfully identifies major cell types such as T cells, B cells, natural killer cells, and monocytes in 2 peripheral blood mononuclear cell datasets and recovers major cell types in a previously published mouse cortex dataset. These major cell groups identified by IKAP present more distinguishing DE genes compared with cell groups generated by different combinations of clustering parameters. We further show that cell subtypes can be identified by recursively applying IKAP within identified major cell types, thereby delineating cell identities in a multi-layered ontology.ConclusionsBy tuning the clustering parameters to identify major cell groups, IKAP greatly improves the automation of single-cell RNA-sequencing analysis to produce distinguishing DE genes and refine cell ontology using single-cell RNA-sequencing data.


2019 ◽  
Author(s):  
Matthew N. Bernstein ◽  
Zhongjie Ma ◽  
Michael Gleicher ◽  
Colin N. Dewey

SummaryCell type annotation is a fundamental task in the analysis of single-cell RNA-sequencing data. In this work, we present CellO, a machine learning-based tool for annotating human RNA-seq data with the Cell Ontology. CellO enables accurate and standardized cell type classification by considering the rich hierarchical structure of known cell types, a source of prior knowledge that is not utilized by existing methods. Furthemore, CellO comes pre-trained on a novel, comprehensive dataset of human, healthy, untreated primary samples in the Sequence Read Archive, which to the best of our knowledge, is the most diverse curated collection of primary cell data to date. CellO’s comprehensive training set enables it to run out-of-the-box on diverse cell types and achieves superior or competitive performance when compared to existing state-of-the-art methods. Lastly, CellO’s linear models are easily interpreted, thereby enabling exploration of cell type-specific expression signatures across the ontology. To this end, we also present the CellO Viewer: a web application for exploring CellO’s models across the ontology.HighlightWe present CellO, a tool for hierarchically classifying cell type from single-cell RNA-seq data against the graph-structured Cell OntologyCellO is pre-trained on a comprehensive dataset comprising nearly all bulk RNA-seq primary cell samples in the Sequence Read ArchiveCellO achieves superior or comparable performance with existing methods while featuring a more comprehensive pre-packaged training setCellO is built with easily interpretable models which we expose through a novel web application, the CellO Viewer, for exploring cell type-specific signatures across the Cell OntologyGraphical Abstract


2019 ◽  
Author(s):  
Yun-Ching Chen ◽  
Abhilash Suresh ◽  
Chingiz Underbayev ◽  
Clare Sun ◽  
Komudi Singh ◽  
...  

AbstractIn single-cell RNA-seq analysis, clustering cells into groups and differentiating cell groups by marker genes are two separate steps for investigating cell identity. However, results in clustering greatly affect the ability to differentiate between cell groups. We develop IKAP – an algorithm identifying major cell groups that improves differentiating by tuning parameters for clustering. Using multiple datasets, we demonstrate IKAP improves identification of major cell types and facilitates cell ontology curation.


Sign in / Sign up

Export Citation Format

Share Document