scholarly journals TPXL-1 Activates Aurora A to Clear Contractile Ring Components from the Polar Cortex During Cytokinesis

2017 ◽  
Author(s):  
Sriyash Mangal ◽  
Jennifer Sacher ◽  
Taekyung Kim ◽  
Daniel Sampaio Osório ◽  
Fumio Motegi ◽  
...  

ABSTRACTDuring cytokinesis, a signal from the bundled microtubules that form between the separating anaphase chromosomes promotes the accumulation of contractile ring components at the cell equator, while a signal from the centrosomal microtubule asters inhibits accumulation of contractile ring components at the cell poles. However, the molecular identity of the inhibitory signal has remained unknown. To identify molecular components of the aster-based inhibitory signal, we developed a means to monitor the removal of contractile ring proteins from the polar cortex after anaphase onset. Using this assay, we show that polar clearing is an active process that requires activation of Aurora A kinase by TPXL-1. TPXL-1 concentrates on astral microtubules coincident with polar clearing in anaphase, and its ability to recruit Aurora A and activate its kinase activity are essential for clearing. In summary, our data identify Aurora A kinase as an aster-based inhibitory signal that restricts contractile ring components to the cell equator during cytokinesis.SUMMARYDuring cytokinesis, centrosomal asters inhibit cortical contractility at the cell poles. Mangal et al. provide molecular insight into this phenomenon, showing that TPXL-1, which localizes to astral microtubules, activates Aurora A kinase to clear contractile ring proteins from the polar cortex.

2018 ◽  
Vol 217 (3) ◽  
pp. 837-848 ◽  
Author(s):  
Sriyash Mangal ◽  
Jennifer Sacher ◽  
Taekyung Kim ◽  
Daniel Sampaio Osório ◽  
Fumio Motegi ◽  
...  

During cytokinesis, a signal from the central spindle that forms between the separating anaphase chromosomes promotes the accumulation of contractile ring components at the cell equator, while a signal from the centrosomal microtubule asters inhibits accumulation of contractile ring components at the cell poles. However, the molecular identity of the inhibitory signal has remained unknown. To identify molecular components of the aster-based inhibitory signal, we developed a means to monitor the removal of contractile ring proteins from the polar cortex after anaphase onset. Using this assay, we show that polar clearing is an active process that requires activation of Aurora A kinase by TPXL-1. TPXL-1 concentrates on astral microtubules coincident with polar clearing in anaphase, and its ability to recruit Aurora A and activate its kinase activity are essential for clearing. In summary, our data identify Aurora A kinase as an aster-based inhibitory signal that restricts contractile ring components to the cell equator during cytokinesis.


2011 ◽  
Vol 16 (8) ◽  
pp. 925-931 ◽  
Author(s):  
Amy Emery ◽  
David A. Sorrell ◽  
Stacy Lawrence ◽  
Emma Easthope ◽  
Mark Stockdale ◽  
...  

Aurora A kinase is a key regulator of mitosis, which is upregulated in several human cancers, making it a potential target for anticancer therapeutics. Consequently, robust medium- to high-throughput cell-based assays to measure Aurora A kinase activity are critical for the development of small-molecule inhibitors. Here the authors compare measurement of the phosphorylation of two Aurora A substrates previously used in high-content screening Aurora A assays, Aurora A itself and TACC3, with a novel substrate Lats2. Using antibodies directed against phosphorylated forms of Aurora A (pThr288), P-TACC3 (pSer558), and P-Lats2 (pSer83), the authors investigate their suitability in parallel for development of a cell-based assay using several reference Aurora inhibitors: MLN8054, VX680, and AZD1152-HQPA. They validate a combined assay of target-specific phosphorylation of Lats2 at the centrosome and an increase in mitotic index as a measure of Aurora A activity. The assay is both sensitive and robust and has acceptable assay performance for high-throughput screening or potency estimation from concentration–response assays. It has the advantage that it can be carried out using a commercially available monoclonal antibody against phospho-Lats2 and the widely available Cellomics ArrayScan HCS reader and thus represents a significant addition to the tools available for the identification of Aurora A specific inhibitors.


2011 ◽  
Vol 4 (4) ◽  
pp. 409-412 ◽  
Author(s):  
Liam P. Cheeseman ◽  
Daniel G. Booth ◽  
Fiona E. Hood ◽  
Ian A. Prior ◽  
Stephen J. Royle

2018 ◽  
Vol 131 (7) ◽  
pp. jcs191353 ◽  
Author(s):  
Thibault Courtheoux ◽  
Alghassimou Diallo ◽  
Arun Prasath Damodaran ◽  
David Reboutier ◽  
Erwan Watrin ◽  
...  

2012 ◽  
Vol 107 (9) ◽  
pp. 2408-2420 ◽  
Author(s):  
B. Pan ◽  
J. Waguespack ◽  
M. E. Schnee ◽  
C. LeBlanc ◽  
A. J. Ricci

Mechanoelectric transducer (MET) channels, located near stereocilia tips, are opened by deflecting the hair bundle of sensory hair cells. Defects in this process result in deafness. Despite this critical function, the molecular identity of MET channels remains a mystery. Inherent channel properties, particularly those associated with permeation, provide the backbone for the molecular identification of ion channels. Here, a novel channel rectification mechanism is identified, resulting in a reduced pore size at positive potentials. The apparent difference in pore dimensions results from Ca2+ binding within the pore, occluding permeation. Driving force for permeation at hyperpolarized potentials is increased because Ca2+ can more easily be removed from binding within the pore due to the presence of an electronegative external vestibule that dehydrates and concentrates permeating ions. Alterations in Ca2+ binding may underlie tonotopic and Ca2+-dependent variations in channel conductance. This Ca2+-dependent rectification provides targets for identifying the molecular components of the MET channel.


2018 ◽  
Author(s):  
Sukriti Kapoor ◽  
Sachin Kotak

AbstractThe proper establishment of the cell polarity is essential for development and morphogenesis. In the Caenorhabditis elegans one-cell embryo, a centrosome localized signal provides spatial information that is responsible for generating a single polarity axis. It is hypothesized that such a signal causes local inhibition of cortical actomyosin network in the vicinity of the centrosome. This pivotal event initiates symmetry breaking to direct partitioning of the partition defective proteins (PARs) in the one-cell embryo. However, the molecular nature of the centrosome regulated signal that impinges on the posterior cortex to bring upon cortical anisotropy in the actomyosin network and to promote polarity establishment remains elusive. Here, we discover that Aurora A kinase (AIR-1 in C. elegans) is essential for proper cortical contractility in the one-cell embryo. Loss of AIR-1 causes pronounced cortical contractions on the entire embryo surface during polarity establishment phase, and this creates more than one PAR-2 polarity axis. Moreover, we show that in the absence of AIR-1, centrosome positioning becomes dispensable in dictating the PAR-2 polarity axis. Interestingly, we identify that Rho Guanine Exchange Factor (GEF) ECT-2 acts downstream to AIR-1 to control excess contractility and notably AIR-1 loss affects ECT-2 cortical localization and thereby polarity establishment. Overall, our study unravels a novel insight whereby an evolutionarily conserved kinase Aurora A inhibits promiscuous PAR-2 domain formation and ensures singularity in the polarity establishment axis.


2005 ◽  
Vol 4 (4) ◽  
pp. 1296-1303 ◽  
Author(s):  
Sonia Troiani ◽  
Mauro Uggeri ◽  
Jürgen Moll ◽  
Antonella Isacchi ◽  
Henryk M. Kalisz ◽  
...  

2020 ◽  
Vol 11 (10) ◽  
pp. 9010-9019
Author(s):  
Tzu-Tung Yu ◽  
Meng-Ya Chang ◽  
Yi-Jen Hsieh ◽  
Chih-Jui Chang

The anti-cancer properties of BITC may result from the inhibition of Aurora A kinase activity.


2015 ◽  
Vol 26 (23) ◽  
pp. 4187-4196 ◽  
Author(s):  
Eisuke Sumiyoshi ◽  
Yuma Fukata ◽  
Satoshi Namai ◽  
Asako Sugimoto

In many animals, female meiotic spindles are assembled in the absence of centrosomes, the major microtubule (MT)-organizing centers. How MTs are formed and organized into meiotic spindles is poorly understood. Here we report that, in Caenorhabditis elegans, Aurora A kinase/AIR-1 is required for the formation of spindle microtubules during female meiosis. When AIR-1 was depleted or its kinase activity was inhibited in C. elegans oocytes, although MTs were formed around chromosomes at germinal vesicle breakdown (GVBD), they were decreased during meiotic prometaphase and failed to form a bipolar spindle, and chromosomes were not separated into two masses. Whereas AIR-1 protein was detected on and around meiotic spindles, its kinase-active form was concentrated on chromosomes at prometaphase and on interchromosomal MTs during late anaphase and telophase. We also found that AIR-1 is involved in the assembly of short, dynamic MTs in the meiotic cytoplasm, and these short MTs were actively incorporated into meiotic spindles. Collectively our results suggest that, after GVBD, the kinase activity of AIR-1 is continuously required for the assembly and/or stabilization of female meiotic spindle MTs.


2011 ◽  
Vol 194 (1) ◽  
pp. 157-157
Author(s):  
Olga V. Plotnikova ◽  
Elena N. Pugacheva ◽  
Erica A. Golemis

Sign in / Sign up

Export Citation Format

Share Document