Searching for Biomarkers of Aurora-A Kinase Activity:  Identification of in Vitro Substrates through a Modified KESTREL Approach

2005 ◽  
Vol 4 (4) ◽  
pp. 1296-1303 ◽  
Author(s):  
Sonia Troiani ◽  
Mauro Uggeri ◽  
Jürgen Moll ◽  
Antonella Isacchi ◽  
Henryk M. Kalisz ◽  
...  
2010 ◽  
Vol 8 (3) ◽  
pp. 373-384 ◽  
Author(s):  
Jessica J. Huck ◽  
Mengkun Zhang ◽  
Alice McDonald ◽  
Doug Bowman ◽  
Kara M. Hoar ◽  
...  

2011 ◽  
Vol 16 (8) ◽  
pp. 925-931 ◽  
Author(s):  
Amy Emery ◽  
David A. Sorrell ◽  
Stacy Lawrence ◽  
Emma Easthope ◽  
Mark Stockdale ◽  
...  

Aurora A kinase is a key regulator of mitosis, which is upregulated in several human cancers, making it a potential target for anticancer therapeutics. Consequently, robust medium- to high-throughput cell-based assays to measure Aurora A kinase activity are critical for the development of small-molecule inhibitors. Here the authors compare measurement of the phosphorylation of two Aurora A substrates previously used in high-content screening Aurora A assays, Aurora A itself and TACC3, with a novel substrate Lats2. Using antibodies directed against phosphorylated forms of Aurora A (pThr288), P-TACC3 (pSer558), and P-Lats2 (pSer83), the authors investigate their suitability in parallel for development of a cell-based assay using several reference Aurora inhibitors: MLN8054, VX680, and AZD1152-HQPA. They validate a combined assay of target-specific phosphorylation of Lats2 at the centrosome and an increase in mitotic index as a measure of Aurora A activity. The assay is both sensitive and robust and has acceptable assay performance for high-throughput screening or potency estimation from concentration–response assays. It has the advantage that it can be carried out using a commercially available monoclonal antibody against phospho-Lats2 and the widely available Cellomics ArrayScan HCS reader and thus represents a significant addition to the tools available for the identification of Aurora A specific inhibitors.


2011 ◽  
Vol 4 (4) ◽  
pp. 409-412 ◽  
Author(s):  
Liam P. Cheeseman ◽  
Daniel G. Booth ◽  
Fiona E. Hood ◽  
Ian A. Prior ◽  
Stephen J. Royle

2010 ◽  
Vol 83 (Suppl_1) ◽  
pp. 344-344
Author(s):  
Patricia Y. Akinfenwa ◽  
Nonna V. Kolomeyevskaya ◽  
Claire M. Mach ◽  
Zhen Li ◽  
Matthew L. Anderson

2018 ◽  
Vol 131 (7) ◽  
pp. jcs191353 ◽  
Author(s):  
Thibault Courtheoux ◽  
Alghassimou Diallo ◽  
Arun Prasath Damodaran ◽  
David Reboutier ◽  
Erwan Watrin ◽  
...  

2003 ◽  
Vol 162 (5) ◽  
pp. 757-764 ◽  
Author(s):  
Yasuhiko Terada ◽  
Yumi Uetake ◽  
Ryoko Kuriyama

A mitosis-specific Aurora-A kinase has been implicated in microtubule organization and spindle assembly in diverse organisms. However, exactly how Aurora-A controls the microtubule nucleation onto centrosomes is unknown. Here, we show that Aurora-A specifically binds to the COOH-terminal domain of a Drosophila centrosomal protein, centrosomin (CNN), which has been shown to be important for assembly of mitotic spindles and spindle poles. Aurora-A and CNN are mutually dependent for localization at spindle poles, which is required for proper targeting of γ-tubulin and other centrosomal components to the centrosome. The NH2-terminal half of CNN interacts with γ-tubulin, and induces cytoplasmic foci that can initiate microtubule nucleation in vivo and in vitro in both Drosophila and mammalian cells. These results suggest that Aurora-A regulates centrosome assembly by controlling the CNN's ability to targeting and/or anchoring γ-tubulin to the centrosome and organizing microtubule-nucleating sites via its interaction with the COOH-terminal sequence of CNN.


2021 ◽  
Author(s):  
Bin Yu ◽  
Qiaoyu Lin ◽  
Chao Huang ◽  
Boyan Zhang ◽  
Ying Wang ◽  
...  

Precise chromosome segregation is mediated by a well-assembled mitotic spindle, which requires balance of the kinase activity of Aurora A (AurA). However, how this kinase activity is regulated remains largely unclear. Here, using in vivo and in vitro assays, we report that conjugation of SUMO2 with AurA at K258 in early mitosis promotes the kinase activity of AurA and facilitates the binding with its activator, Bora. Knockdown of the SUMO proteases SENP3 and SENP5 disrupted the deSUMOylation of AurA, leading to an increased kinase activity and abnormalities in spindle assembly and chromosomes segregation which could be rescued by suppressing the kinase activity of AurA. Collectively, these results demonstrate that SENP3 and SENP5 deSUMOylate AurA to render a spatiotemporal control on its kinase activity in mitosis.


2020 ◽  
Author(s):  
Arun Prasath Damodaran ◽  
Olivia Gavard ◽  
Jean-Philippe Gagné ◽  
Malgorzata Ewa Rogalska ◽  
Estefania Mancini ◽  
...  

ABSTRACTAurora-A kinase is well known to regulate progression through mitosis. However, the kinase also performs additional functions that could explain the failure of its inhibitors to be effective in cancer treatments. To identify these functions, we applied a proteomics approach to search for interactors of Aurora-A. We found a large number of proteins involved in pre-mRNA splicing, strongly suggesting an important role for Aurora-A in this biological process. Consistently, we first report the subcellular localization of Aurora-A in nuclear speckles, the storehouse of splicing proteins. We also demonstrate direct interaction of Aurora-A with RRM domain-containing splicing factors such as hnRNP and SR proteins and their phosphorylation in vitro. Further, RNA-sequencing analysis following pharmacological inhibition of Aurora-A resulted in alternative splicing changes corresponding to 505 genes, including genes with functions regulated by Aurora-A kinase. Finally, we report enrichment of RNA motifs within the alternatively spliced regions affected by Aurora-A kinase inhibition which are bound by Aurora-A interacting splicing factors, suggesting that Aurora-A regulates alternative splicing by modulating the activity of these interacting splicing factors. Overall our work identified Aurora-A as a novel splicing kinase and for the first time, describes a broad role of Aurora-A in regulating alternative splicing.


Biologia ◽  
2012 ◽  
Vol 67 (5) ◽  
Author(s):  
Imen Ferchichi ◽  
Yannick Arlot ◽  
Jean-Yves Cremet ◽  
Claude Prigent ◽  
Amel Benammar Elgaaied

AbstractThe serine/threonin kinase Aurora A is an oncoprotein, whereas von Hippel-Lindau protein (pVHL) is a tumor suppressor protein. Both proteins have the same localization during mitosis: in the mitotic spindle and the centrosome. These two proteins also have common functions, such as the regulation of the cell cycle, the stability of the mitotic spindle and both intervene in the functioning of centrosomes. In this study we have analyzed the interaction between Aurora A and pVHL with immunoprecipitation and in vitro phosphorylation experiments. We have confirmed that the immunoprecipitation of pVHL from Hek 293 cell extracts were coupled with Aurora A. In addition, the interaction between the two proteins has been tested by analyzing the phosphorylation of pVHL in vitro by Aurora A. The results revealed that pVHL was phosphorylated by Aurora A. In conclusion, the study demonstrated that Aurora A interacts with and phosphorylates pVHL. Given the role of these two proteins in cell division as well as their status in cancer, this interaction requires further investigation.


Sign in / Sign up

Export Citation Format

Share Document