scholarly journals Per-sample immunoglobulin germline inference from B cell receptor deep sequencing data

2017 ◽  
Author(s):  
Duncan K. Ralph ◽  
Frederick A. Matsen

AbstractThe collection of immunoglobulin genes in an individual’s germline, which gives rise to B cell receptors via recombination, is known to vary significantly across individuals. In humans, for example, each individual has only a fraction of the several hundred known V alleles. Furthermore, the currently-accepted set of known V alleles is both incomplete (particularly for non-European samples), and contains a significant number of spurious alleles. The resulting uncertainty as to which immunoglobulin alleles are present in any given sample results in inaccurate B cell receptor sequence annotations, and in particular inaccurate inferred naive ancestors. In this paper we first show that the currently widespread practice of aligning each sequence to its closest match in the full set of IMGT alleles results in a very large number of spurious alleles that are not in the sample’s true set of germline V alleles. We then describe a new method for inferring each individual’s germline gene set from deep sequencing data, and show that it improves upon existing methods by making a detailed comparison on a variety of simulated and real data samples. This new method has been integrated into the partis annotation and clonal family inference package, available at https://github.com/psathyrella/partis, and is run by default without affecting overall run time.Author SummaryAntibodies are an important component of the adaptive immune system, which itself determines our response to both pathogens and vaccines. They are produced by B cells through somatic recombination of germline DNA, which results in a vast diversity of antigen binding affinities across the B cell repertoire. We typically learn about the development of this repertoire, and its history of interaction with antigens, by sequencing large numbers of the DNA sequences from which antibodies are derived. In order to understand such data, it is necessary to determine the combination of germline V, D, and J genes that was rearranged to form each such B cell receptor sequence. This is difficult, however, because the immunoglobulin locus exhibits an extraordinary level of diversity across individuals – encompassing both allelic variation and gene duplication, deletion, and conversion – and because the locus’s large size and repetitive structure make germline sequencing very difficult. In this paper we describe a new computational method that avoids this difficulty by inferring each individual’s set of immunoglobulin germline genes directly from expressed B cell receptor sequence data.

2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Marco Beccuti ◽  
Elisa Genuardi ◽  
Greta Romano ◽  
Luigia Monitillo ◽  
Daniela Barbero ◽  
...  

2016 ◽  
Vol 32 (24) ◽  
pp. 3729-3734 ◽  
Author(s):  
Lisle E. Mose ◽  
Sara R. Selitsky ◽  
Lisa M. Bixby ◽  
David L. Marron ◽  
Michael D. Iglesia ◽  
...  

BMB Reports ◽  
2019 ◽  
Vol 52 (9) ◽  
pp. 540-547 ◽  
Author(s):  
Daeun Kim ◽  
Daechan Park

2021 ◽  
Vol 360 ◽  
pp. 104256
Author(s):  
Shucui Zhang ◽  
Shigang Zhang ◽  
Zongwei Lin ◽  
Xinjie Zhang ◽  
Xinyao Dou ◽  
...  

2013 ◽  
Vol 23 (11) ◽  
pp. 1874-1884 ◽  
Author(s):  
Rachael J.M. Bashford-Rogers ◽  
Anne L. Palser ◽  
Brian J. Huntly ◽  
Richard Rance ◽  
George S. Vassiliou ◽  
...  

Author(s):  
Jacob D. Galson ◽  
Sebastian Schaetzle ◽  
Rachael J. M. Bashford-Rogers ◽  
Matthew I. J. Raybould ◽  
Aleksandr Kovaltsuk ◽  
...  

AbstractDeep sequencing of B cell receptor (BCR) heavy chains from a cohort of 19 COVID-19 patients from the UK reveals a stereotypical naive immune response to SARS-CoV-2 which is consistent across patients and may be a positive indicator of disease outcome. Clonal expansion of the B cell memory response is also observed and may be the result of memory bystander effects. There was a strong convergent sequence signature across patients, and we identified 777 clonotypes convergent between at least four of the COVID-19 patients, but not present in healthy controls. A subset of the convergent clonotypes were homologous to known SARS and SARS-CoV-2 spike protein neutralising antibodies. Convergence was also demonstrated across wide geographies by comparison of data sets between patients from UK, USA and China, further validating the disease association and consistency of the stereotypical immune response even at the sequence level. These convergent clonotypes provide a resource to identify potential therapeutic and prophylactic antibodies and demonstrate the potential of BCR profiling as a tool to help understand and predict positive patient responses.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shadi Darvish Shafighi ◽  
Szymon M. Kiełbasa ◽  
Julieta Sepúlveda-Yáñez ◽  
Ramin Monajemi ◽  
Davy Cats ◽  
...  

Abstract Background Drawing genotype-to-phenotype maps in tumors is of paramount importance for understanding tumor heterogeneity. Assignment of single cells to their tumor clones of origin can be approached by matching the genotypes of the clones to the mutations found in RNA sequencing of the cells. The confidence of the cell-to-clone mapping can be increased by accounting for additional measurements. Follicular lymphoma, a malignancy of mature B cells that continuously acquire mutations in parallel in the exome and in B cell receptor loci, presents a unique opportunity to join exome-derived mutations with B cell receptor sequences as independent sources of evidence for clonal evolution. Methods Here, we propose CACTUS, a probabilistic model that leverages the information from an independent genomic clustering of cells and exploits the scarce single cell RNA sequencing data to map single cells to given imperfect genotypes of tumor clones. Results We apply CACTUS to two follicular lymphoma patient samples, integrating three measurements: whole exome, single-cell RNA, and B cell receptor sequencing. CACTUS outperforms a predecessor model by confidently assigning cells and B cell receptor-based clusters to the tumor clones. Conclusions The integration of independent measurements increases model certainty and is the key to improving model performance in the challenging task of charting the genotype-to-phenotype maps in tumors. CACTUS opens the avenue to study the functional implications of tumor heterogeneity, and origins of resistance to targeted therapies. CACTUS is written in R and source code, along with all supporting files, are available on GitHub (https://github.com/LUMC/CACTUS).


2020 ◽  
Vol 11 ◽  
Author(s):  
Jacob D. Galson ◽  
Sebastian Schaetzle ◽  
Rachael J. M. Bashford-Rogers ◽  
Matthew I. J. Raybould ◽  
Aleksandr Kovaltsuk ◽  
...  

Deep sequencing of B cell receptor (BCR) heavy chains from a cohort of 31 COVID-19 patients from the UK reveals a stereotypical naive immune response to SARS-CoV-2 which is consistent across patients. Clonal expansion of the B cell population is also observed and may be the result of memory bystander effects. There was a strong convergent sequence signature across patients, and we identified 1,254 clonotypes convergent between at least four of the COVID-19 patients, but not present in healthy controls or individuals following seasonal influenza vaccination. A subset of the convergent clonotypes were homologous to known SARS and SARS-CoV-2 spike protein neutralizing antibodies. Convergence was also demonstrated across wide geographies by comparison of data sets between patients from UK, USA, and China, further validating the disease association and consistency of the stereotypical immune response even at the sequence level. These convergent clonotypes provide a resource to identify potential therapeutic and prophylactic antibodies and demonstrate the potential of BCR profiling as a tool to help understand patient responses.


2019 ◽  
Author(s):  
Aleksandr Kovaltsuk ◽  
Matthew I. J. Raybould ◽  
Wing Ki Wong ◽  
Claire Marks ◽  
Sebastian Kelm ◽  
...  

AbstractMost current analysis tools for antibody next-generation sequencing data work with primary sequence descriptors, leaving accompanying structural information unharnessed. We have used novel rapid methods to structurally characterize the paratopes of more than 180 million human and mouse B-cell receptor (BCR) repertoire sequences. These structurally annotated paratopes provide unprecedented insights into both the structural predetermination and dynamics of the adaptive immune response. We show that B-cell types can be distinguished based solely on these structural properties. Antigen-unexperienced BCR repertoires use the highest number and diversity of paratope structures and these patterns of naïve repertoire paratope usage are highly conserved across subjects. In contrast, more differentiated B-cells are more personalized in terms of paratope structure usage. Our results establish the paratope structure differences in BCR repertoires and have applications for many fields including immunodiagnostics, phage display library generation, and “humanness” assessment of BCR repertoires from transgenic animals.


Sign in / Sign up

Export Citation Format

Share Document