scholarly journals Structural Diversity of B-Cell Receptor Repertoires along the B-cell Differentiation Axis in Humans and Mice

2019 ◽  
Author(s):  
Aleksandr Kovaltsuk ◽  
Matthew I. J. Raybould ◽  
Wing Ki Wong ◽  
Claire Marks ◽  
Sebastian Kelm ◽  
...  

AbstractMost current analysis tools for antibody next-generation sequencing data work with primary sequence descriptors, leaving accompanying structural information unharnessed. We have used novel rapid methods to structurally characterize the paratopes of more than 180 million human and mouse B-cell receptor (BCR) repertoire sequences. These structurally annotated paratopes provide unprecedented insights into both the structural predetermination and dynamics of the adaptive immune response. We show that B-cell types can be distinguished based solely on these structural properties. Antigen-unexperienced BCR repertoires use the highest number and diversity of paratope structures and these patterns of naïve repertoire paratope usage are highly conserved across subjects. In contrast, more differentiated B-cells are more personalized in terms of paratope structure usage. Our results establish the paratope structure differences in BCR repertoires and have applications for many fields including immunodiagnostics, phage display library generation, and “humanness” assessment of BCR repertoires from transgenic animals.

2016 ◽  
Vol 32 (24) ◽  
pp. 3729-3734 ◽  
Author(s):  
Lisle E. Mose ◽  
Sara R. Selitsky ◽  
Lisa M. Bixby ◽  
David L. Marron ◽  
Michael D. Iglesia ◽  
...  

2020 ◽  
Vol 21 (6) ◽  
pp. 2206 ◽  
Author(s):  
Andrea Härzschel ◽  
Antonella Zucchetto ◽  
Valter Gattei ◽  
Tanja Nicole Hartmann

Lineage commitment and differentiation of hematopoietic cells takes place in well-defined microenvironmental surroundings. Communication with other cell types is a vital prerequisite for the normal functions of the immune system, while disturbances in this communication support the development and progression of neoplastic disease. Integrins such as the integrin very late antigen-4 (VLA-4; CD49d/CD29) control the localization of healthy as well as malignant B cells within the tissue, and thus determine the patterns of organ infiltration. Malignant B cells retain some key characteristics of their normal counterparts, with B cell receptor (BCR) signaling and integrin-mediated adhesion being essential mediators of tumor cell homing, survival and proliferation. It is thus not surprising that targeting the BCR pathway using small molecule inhibitors has proved highly effective in the treatment of B cell malignancies. Attenuation of BCR-dependent lymphoma–microenvironment interactions was, in this regard, described as a main mechanism critically contributing to the efficacy of these agents. Here, we review the contribution of VLA-4 to normal B cell differentiation on the one hand, and to the pathophysiology of B cell malignancies on the other hand. We describe its impact as a prognostic marker, its interplay with BCR signaling and its predictive role for novel BCR-targeting therapies, in chronic lymphocytic leukemia and beyond.


2020 ◽  
Vol 16 (2) ◽  
pp. e1007636 ◽  
Author(s):  
Aleksandr Kovaltsuk ◽  
Matthew I. J. Raybould ◽  
Wing Ki Wong ◽  
Claire Marks ◽  
Sebastian Kelm ◽  
...  

2013 ◽  
Vol 210 (12) ◽  
pp. 2755-2771 ◽  
Author(s):  
Jin-Shu He ◽  
Michael Meyer-Hermann ◽  
Deng Xiangying ◽  
Lim Yok Zuan ◽  
Leigh Ann Jones ◽  
...  

The mechanisms involved in the maintenance of memory IgE responses are poorly understood, and the role played by germinal center (GC) IgE+ cells in memory responses is particularly unclear. IgE+ B cell differentiation is characterized by a transient GC phase, a bias toward the plasma cell (PC) fate, and dependence on sequential switching for the production of high-affinity IgE. We show here that IgE+ GC B cells are unfit to undergo the conventional GC differentiation program due to impaired B cell receptor function and increased apoptosis. IgE+ GC cells fail to populate the GC light zone and are unable to contribute to the memory and long-lived PC compartments. Furthermore, we demonstrate that direct and sequential switching are linked to distinct B cell differentiation fates: direct switching generates IgE+ GC cells, whereas sequential switching gives rise to IgE+ PCs. We propose a comprehensive model for the generation and memory of IgE responses.


Scientifica ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Joseph R. Slupsky

Chronic lymphocytic leukaemia (CLL) is an incurable malignancy of mature B cells. CLL is important clinically in Western countries because of its commonality and because of the significant morbidity and mortality associated with the progressive form of this incurable disease. The B cell receptor (BCR) expressed on the malignant cells in CLL contributes to disease pathogenesis by providing signals for survival and proliferation, and the signal transduction pathway initiated by engagement of this receptor is now the target of several therapeutic strategies. The purpose of this review is to outline current understanding of the BCR signal cascade in normal B cells and then question whether this understanding applies to CLL cells. In particular, this review studies the phenomenon of anergy in CLL cells, and whether certain adaptations allow the cells to overcome anergy and allow full BCR signaling to take place. Finally, this review analyzes how BCR signals can be therapeutically targeted for the treatment of CLL.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shadi Darvish Shafighi ◽  
Szymon M. Kiełbasa ◽  
Julieta Sepúlveda-Yáñez ◽  
Ramin Monajemi ◽  
Davy Cats ◽  
...  

Abstract Background Drawing genotype-to-phenotype maps in tumors is of paramount importance for understanding tumor heterogeneity. Assignment of single cells to their tumor clones of origin can be approached by matching the genotypes of the clones to the mutations found in RNA sequencing of the cells. The confidence of the cell-to-clone mapping can be increased by accounting for additional measurements. Follicular lymphoma, a malignancy of mature B cells that continuously acquire mutations in parallel in the exome and in B cell receptor loci, presents a unique opportunity to join exome-derived mutations with B cell receptor sequences as independent sources of evidence for clonal evolution. Methods Here, we propose CACTUS, a probabilistic model that leverages the information from an independent genomic clustering of cells and exploits the scarce single cell RNA sequencing data to map single cells to given imperfect genotypes of tumor clones. Results We apply CACTUS to two follicular lymphoma patient samples, integrating three measurements: whole exome, single-cell RNA, and B cell receptor sequencing. CACTUS outperforms a predecessor model by confidently assigning cells and B cell receptor-based clusters to the tumor clones. Conclusions The integration of independent measurements increases model certainty and is the key to improving model performance in the challenging task of charting the genotype-to-phenotype maps in tumors. CACTUS opens the avenue to study the functional implications of tumor heterogeneity, and origins of resistance to targeted therapies. CACTUS is written in R and source code, along with all supporting files, are available on GitHub (https://github.com/LUMC/CACTUS).


2017 ◽  
Author(s):  
Duncan K. Ralph ◽  
Frederick A. Matsen

AbstractThe collection of immunoglobulin genes in an individual’s germline, which gives rise to B cell receptors via recombination, is known to vary significantly across individuals. In humans, for example, each individual has only a fraction of the several hundred known V alleles. Furthermore, the currently-accepted set of known V alleles is both incomplete (particularly for non-European samples), and contains a significant number of spurious alleles. The resulting uncertainty as to which immunoglobulin alleles are present in any given sample results in inaccurate B cell receptor sequence annotations, and in particular inaccurate inferred naive ancestors. In this paper we first show that the currently widespread practice of aligning each sequence to its closest match in the full set of IMGT alleles results in a very large number of spurious alleles that are not in the sample’s true set of germline V alleles. We then describe a new method for inferring each individual’s germline gene set from deep sequencing data, and show that it improves upon existing methods by making a detailed comparison on a variety of simulated and real data samples. This new method has been integrated into the partis annotation and clonal family inference package, available at https://github.com/psathyrella/partis, and is run by default without affecting overall run time.Author SummaryAntibodies are an important component of the adaptive immune system, which itself determines our response to both pathogens and vaccines. They are produced by B cells through somatic recombination of germline DNA, which results in a vast diversity of antigen binding affinities across the B cell repertoire. We typically learn about the development of this repertoire, and its history of interaction with antigens, by sequencing large numbers of the DNA sequences from which antibodies are derived. In order to understand such data, it is necessary to determine the combination of germline V, D, and J genes that was rearranged to form each such B cell receptor sequence. This is difficult, however, because the immunoglobulin locus exhibits an extraordinary level of diversity across individuals – encompassing both allelic variation and gene duplication, deletion, and conversion – and because the locus’s large size and repetitive structure make germline sequencing very difficult. In this paper we describe a new computational method that avoids this difficulty by inferring each individual’s set of immunoglobulin germline genes directly from expressed B cell receptor sequence data.


Sign in / Sign up

Export Citation Format

Share Document