scholarly journals Assembly-based inference of B-cell receptor repertoires from short read RNA sequencing data with V’DJer

2016 ◽  
Vol 32 (24) ◽  
pp. 3729-3734 ◽  
Author(s):  
Lisle E. Mose ◽  
Sara R. Selitsky ◽  
Lisa M. Bixby ◽  
David L. Marron ◽  
Michael D. Iglesia ◽  
...  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shadi Darvish Shafighi ◽  
Szymon M. Kiełbasa ◽  
Julieta Sepúlveda-Yáñez ◽  
Ramin Monajemi ◽  
Davy Cats ◽  
...  

Abstract Background Drawing genotype-to-phenotype maps in tumors is of paramount importance for understanding tumor heterogeneity. Assignment of single cells to their tumor clones of origin can be approached by matching the genotypes of the clones to the mutations found in RNA sequencing of the cells. The confidence of the cell-to-clone mapping can be increased by accounting for additional measurements. Follicular lymphoma, a malignancy of mature B cells that continuously acquire mutations in parallel in the exome and in B cell receptor loci, presents a unique opportunity to join exome-derived mutations with B cell receptor sequences as independent sources of evidence for clonal evolution. Methods Here, we propose CACTUS, a probabilistic model that leverages the information from an independent genomic clustering of cells and exploits the scarce single cell RNA sequencing data to map single cells to given imperfect genotypes of tumor clones. Results We apply CACTUS to two follicular lymphoma patient samples, integrating three measurements: whole exome, single-cell RNA, and B cell receptor sequencing. CACTUS outperforms a predecessor model by confidently assigning cells and B cell receptor-based clusters to the tumor clones. Conclusions The integration of independent measurements increases model certainty and is the key to improving model performance in the challenging task of charting the genotype-to-phenotype maps in tumors. CACTUS opens the avenue to study the functional implications of tumor heterogeneity, and origins of resistance to targeted therapies. CACTUS is written in R and source code, along with all supporting files, are available on GitHub (https://github.com/LUMC/CACTUS).


2019 ◽  
Vol 2 (4) ◽  
pp. e201900371 ◽  
Author(s):  
Shaked Afik ◽  
Gabriel Raulet ◽  
Nir Yosef

RNA sequencing of single B cells provides simultaneous measurements of the cell state and its antigen specificity as determined by the B-cell receptor (BCR). However, to uncover the latter, further reconstruction of the BCR sequence is needed. We present BRAPeS (“BCR Reconstruction Algorithm for Paired-end Single cells” ), an algorithm for reconstructing BCRs from short-read paired-end single-cell RNA sequencing. BRAPeS is accurate and achieves a high success rate even at very short (25 bp) read length, which can decrease the cost and increase the number of cells that can be analyzed compared with long reads. BRAPeS is publicly available at the following link: https://github.com/YosefLab/BRAPeS.


2018 ◽  
Author(s):  
Shaked Afik ◽  
Gabriel Raulet ◽  
Nir Yosef

ABSTRACTRNA-sequencing of single B cells provides simultaneous measurements of the cell state and its binding specificity. However, in order to uncover the latter further reconstruction of the B cell receptor (BCR) sequence is needed. We present BRAPeS, an algorithm for reconstructing BCRs from short-read paired-end single cell RNA-sequencing. BRAPeS is accurate and achieves a high success rate even at very short (25bp) read length, which can decrease the cost and increase the number of cells that can be analyzed compared to long reads. BRAPeS is publicly available in the following link: https://github.com/YosefLab/BRAPeS.


2017 ◽  
Author(s):  
Duncan K. Ralph ◽  
Frederick A. Matsen

AbstractThe collection of immunoglobulin genes in an individual’s germline, which gives rise to B cell receptors via recombination, is known to vary significantly across individuals. In humans, for example, each individual has only a fraction of the several hundred known V alleles. Furthermore, the currently-accepted set of known V alleles is both incomplete (particularly for non-European samples), and contains a significant number of spurious alleles. The resulting uncertainty as to which immunoglobulin alleles are present in any given sample results in inaccurate B cell receptor sequence annotations, and in particular inaccurate inferred naive ancestors. In this paper we first show that the currently widespread practice of aligning each sequence to its closest match in the full set of IMGT alleles results in a very large number of spurious alleles that are not in the sample’s true set of germline V alleles. We then describe a new method for inferring each individual’s germline gene set from deep sequencing data, and show that it improves upon existing methods by making a detailed comparison on a variety of simulated and real data samples. This new method has been integrated into the partis annotation and clonal family inference package, available at https://github.com/psathyrella/partis, and is run by default without affecting overall run time.Author SummaryAntibodies are an important component of the adaptive immune system, which itself determines our response to both pathogens and vaccines. They are produced by B cells through somatic recombination of germline DNA, which results in a vast diversity of antigen binding affinities across the B cell repertoire. We typically learn about the development of this repertoire, and its history of interaction with antigens, by sequencing large numbers of the DNA sequences from which antibodies are derived. In order to understand such data, it is necessary to determine the combination of germline V, D, and J genes that was rearranged to form each such B cell receptor sequence. This is difficult, however, because the immunoglobulin locus exhibits an extraordinary level of diversity across individuals – encompassing both allelic variation and gene duplication, deletion, and conversion – and because the locus’s large size and repetitive structure make germline sequencing very difficult. In this paper we describe a new computational method that avoids this difficulty by inferring each individual’s set of immunoglobulin germline genes directly from expressed B cell receptor sequence data.


2020 ◽  
Author(s):  
Shadi Darvish Shafighi ◽  
Szymon M Kiełbasa ◽  
Julieta Sepúlveda-Yáñez ◽  
Ramin Monajemi ◽  
Davy Cats ◽  
...  

ABSTRACTBackgroundDrawing genotype-to-phenotype maps in tumors is of paramount importance for understanding tumor heterogeneity. Assignment of single cells to their tumor clones of origin can be approached by matching the genotypes of the clones to the mutations found in RNA sequencing of the cells. The confidence of the cell-to-clone mapping can be increased by accounting for additional measurements. Follicular lymphoma, a malignancy of mature B cells that continuously acquire mutations in parallel in the exome and in B-cell receptor loci, presents a unique opportunity to align exome-derived mutations with B-cell receptor clonotypes as an independent measure for clonal evolution.ResultsHere, we propose CACTUS, a probabilistic model that leverages the information from an independent genomic clustering of cells and exploits the scarce single cell RNA sequencing data to map single cells to given imperfect genotypes of tumor clones. We apply CACTUS to two follicular lymphoma patient samples, integrating three measurements: whole exome sequencing, single cell RNA sequencing, and B-cell receptor sequencing. CACTUS outperforms a predecessor model by confidently assigning cells and B-cell receptor clonotypes to the tumor clones.ConclusionsThe integration of independent measurements increases model certainty and is the key to improving model performance in the challenging task of charting the genotype-to-phenotype maps in tumors. CACTUS opens the avenue to study the functional implications of tumor heterogeneity, and origins of resistance to targeted therapies.


2017 ◽  
Author(s):  
Ida Lindeman ◽  
Guy Emerton ◽  
Ludvig M. Sollid ◽  
Sarah A. Teichmann ◽  
Michael J.T. Stubbington

Reconstruction of antigen receptor sequences from single-cell RNA-sequencing (scRNA-seq) data allows the linking of antigen receptor usage to the full transcriptomic identity of individual B lymphocytes, without having to perform additional targeted repertoire sequencing (Rep-seq). Here we report BraCeR (freely available at https://github.com/teichlab/bracer/), an extension of TraCeR [1], for reconstruction of paired full-length B-cell receptor sequences and inference of clonality from scRNA-seq data (Supplementary Note 1).


2019 ◽  
Author(s):  
Aleksandr Kovaltsuk ◽  
Matthew I. J. Raybould ◽  
Wing Ki Wong ◽  
Claire Marks ◽  
Sebastian Kelm ◽  
...  

AbstractMost current analysis tools for antibody next-generation sequencing data work with primary sequence descriptors, leaving accompanying structural information unharnessed. We have used novel rapid methods to structurally characterize the paratopes of more than 180 million human and mouse B-cell receptor (BCR) repertoire sequences. These structurally annotated paratopes provide unprecedented insights into both the structural predetermination and dynamics of the adaptive immune response. We show that B-cell types can be distinguished based solely on these structural properties. Antigen-unexperienced BCR repertoires use the highest number and diversity of paratope structures and these patterns of naïve repertoire paratope usage are highly conserved across subjects. In contrast, more differentiated B-cells are more personalized in terms of paratope structure usage. Our results establish the paratope structure differences in BCR repertoires and have applications for many fields including immunodiagnostics, phage display library generation, and “humanness” assessment of BCR repertoires from transgenic animals.


2018 ◽  
Author(s):  
Wei Zhang ◽  
Xinyue Li ◽  
Longlong Wang ◽  
Jianxiang Deng ◽  
Liya Lin ◽  
...  

AbstractThe Rhesus macaque is a valuable preclinical animal model to estimate vaccine effectiveness, and is also important for understanding antibody maturation and B-cell repertoire evolution responding to vaccination; however, incomplete mapping of rhesus immunoglobulin germline genes hinders the research efforts. To address this deficiency, we sequenced B-cell receptor (BCR) repertoires of 75 India Rhesus macaques. Using a bioinformatic method that has been validated with BCR repertoire analysis of three human donors, we were able to infer rhesus Variable (V) and Joint(J) germline alleles, identifying a total of 122 V and 20 J germline alleles. Importantly, 91 V and 13 J alleles were novel, and 40 V and 13 J genes were found at a novel genome region that has not been previously recorded. The novelty of these newly identified alleles was supported by two observations. Firstly, 50 V and 5 J novel alleles were observed in whole genome sequencing data of 10 Rhesus macaques. Secondly, using alignment reference including the novel alleles, the mutation rate of rearranged repertoires was significant declined in 9 other irrelevant samples, and all our identified novel V and J alleles were 100% identity mapped by rearranged repertoire data. These newly identified novel alleles, along with previous reported alleles, provide an important reference for future investigations of rhesus immune repertoire evolution, in response to vaccination or infection. In addition, the method outlined in our study offered an example to future efforts in identifying novel immunoglobulin alleles.


Sign in / Sign up

Export Citation Format

Share Document