scholarly journals Learning a neural response metric for retinal prosthesis

2017 ◽  
Author(s):  
Nishal P. Shah ◽  
Sasidhar Madugula ◽  
E.J. Chichilnisky ◽  
Jonathon Shlens ◽  
Yoram Singer

ABSTRACTRetinal prostheses for treating incurable blindness are designed to electrically stimulate surviving retinal neurons, causing them to send artificial visual signals to the brain. However, electrical stimulation generally cannot precisely reproduce typical patterns of neural activity in the retina. Therefore, an electrical stimulus must be selected so as to produce a neural response as close as possible to the desired response. This requires a technique for computing the distance between a desired response and an achievable response that is meaningful in terms of the visual signal being conveyed. We propose a method to learn a metric on neural responses directly from recorded light responses of a population of retinal ganglion cells (RGCs) in the primate retina. The learned metric produces a measure of similarity of RGC population responses that accurately reflects the similarity of visual inputs. Using data from electrical stimulation experiments, we demonstrate that the learned metric could produce improvements in the performance of a retinal prosthesis.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seongkwang Cha ◽  
Kwang-Eon Choi ◽  
Jungryul Ahn ◽  
Minsu Yoo ◽  
Yurim Jeong ◽  
...  

AbstractRetinal prosthesis is regarded as the treatment for vision restoration in the blind with retinal degeneration (RD) due to the loss of photoreceptors. A strategy for retinal prosthesis is to electrically activate surviving neurons. The retina’s response to electrical stimulation in a larger RD model has not been studied yet. Therefore, in this study, we investigated electrically evoked retinal responses in a previously validated N-methyl-N-nitrosourea (MNU)-induced porcine RD model. Electrically evoked responses were evaluated based on the number of retinal ganglion cell (RGC) spikes via multichannel recordings. Stimulation pulses were applied to degenerative and wild-type retinas with pulse modulation. Compared to wild-type retinas, degenerative retinas showed higher threshold values of pulse amplitude and pulse duration. The rate of increase in the number of RGC spikes relative to stimulus intensity was lower in degenerative retinas than in normal retinas. In severely degenerated retinas, few RGCs showed electrically evoked spikes. Our results suggest that the degenerative porcine retina requires a higher charge than the normal porcine retina. In the early stage of RD, it is easier to induce RGC spikes through electrical stimulation using retinal prosthesis; however, when the degeneration is severe, there may be difficulty recovering patient vision.


Biomaterials ◽  
2012 ◽  
Vol 33 (24) ◽  
pp. 5812-5820 ◽  
Author(s):  
Alex E. Hadjinicolaou ◽  
Ronald T. Leung ◽  
David J. Garrett ◽  
Kumaravelu Ganesan ◽  
Kate Fox ◽  
...  

2012 ◽  
Vol 107 (10) ◽  
pp. 2742-2755 ◽  
Author(s):  
Max Eickenscheidt ◽  
Martin Jenkner ◽  
Roland Thewes ◽  
Peter Fromherz ◽  
Günther Zeck

Electrical stimulation of retinal neurons offers the possibility of partial restoration of visual function. Challenges in neuroprosthetic applications are the long-term stability of the metal-based devices and the physiological activation of retinal circuitry. In this study, we demonstrate electrical stimulation of different classes of retinal neurons with a multicapacitor array. The array—insulated by an inert oxide—allows for safe stimulation with monophasic anodal or cathodal current pulses of low amplitude. Ex vivo rabbit retinas were interfaced in either epiretinal or subretinal configuration to the multicapacitor array. The evoked activity was recorded from ganglion cells that respond to light increments by an extracellular tungsten electrode. First, a monophasic epiretinal cathodal or a subretinal anodal current pulse evokes a complex burst of action potentials in ganglion cells. The first action potential occurs within 1 ms and is attributed to direct stimulation. Within the next milliseconds additional spikes are evoked through bipolar cell or photoreceptor depolarization, as confirmed by pharmacological blockers. Second, monophasic epiretinal anodal or subretinal cathodal currents elicit spikes in ganglion cells by hyperpolarization of photoreceptor terminals. These stimuli mimic the photoreceptor response to light increments. Third, the stimulation symmetry between current polarities (anodal/cathodal) and retina-array configuration (epi/sub) is confirmed in an experiment in which stimuli presented at different positions reveal the center-surround organization of the ganglion cell. A simple biophysical model that relies on voltage changes of cell terminals in the transretinal electric field above the stimulation capacitor explains our results. This study provides a comprehensive guide for efficient stimulation of different retinal neuronal classes with low-amplitude capacitive currents.


2019 ◽  
Author(s):  
Evan Cesanek ◽  
Fulvio Domini

AbstractTo perform accurate movements, the sensorimotor system must maintain a delicate calibration of the mapping between visual inputs and motor outputs. Previous work has focused on the mapping between visual inputs and individual locations in egocentric space, but little attention has been paid to the mappings that support interactions with 3D objects. In this study, we investigated sensorimotor adaptation of grasping movements targeting the depth dimension of 3D paraboloid objects. Object depth was specified by separately manipulating binocular disparity (stereo) and texture gradients. At the end of each movement, the fingers closed down on a physical object consistent with one of the two cues, depending on the condition (haptic-for-texture or haptic-for-stereo). Unlike traditional adaptation paradigms, where relevant spatial properties are determined by a single dimension of visual information, this method enabled us to investigate whether adaptation processes can selectively adjust the influence of different sources of visual information depending on their relationship to physical depth. In two experiments, we found short-term changes in grasp performance consistent with a process of cue-selective adaptation: the slope of the grip aperture with respect to a reliable cue (correlated with physical reality) increased, whereas the slope with respect to the unreliable cue (uncorrelated with physical reality) decreased. In contrast, slope changes did not occur during exposure to a set of stimuli where both cues remained correlated with physical reality, but one was rendered with a constant bias of 10 mm; the grip aperture simply became uniformly larger or smaller, as in standard adaptation paradigms. Overall, these experiments support a model of cue-selective adaptation driven by correlations between error signals and input values (i.e., supervised learning), rather than mismatched haptic and visual signals.


2007 ◽  
Vol 98 (5) ◽  
pp. 2537-2549 ◽  
Author(s):  
Nazareth P. Castellanos ◽  
Eduardo Malmierca ◽  
Angel Nuñez ◽  
Valeri A. Makarov

Precise and reproducible spike timing is one of the alternatives of the sensory stimulus encoding. We test coherence (repeatability) of the response patterns elicited in projecting gracile neurons by tactile stimulation and its modulation provoked by electrical stimulation of the corticofugal feedback from the somatosensory (SI) cortex. To gain the temporal structure we adopt the wavelet-based approach for quantification of the functional stimulus–neural response coupling. We show that the spontaneous firing patterns (when they exist) are essentially random. Tactile stimulation of the neuron receptive field strongly increases the spectral power in the stimulus and 5- to 15-Hz frequency bands. However, the functional coupling (coherence) between the sensory stimulus and the neural response exhibits ultraslow oscillation (0.07 Hz). During this oscillation the stimulus coherence can temporarily fall below the statistically significant level, i.e., the functional stimulus–response coupling may be temporarily lost for a single neuron. We further demonstrate that electrical stimulation of the SI cortex increases the stimulus coherence for about 60% of cells. We find no significant correlation between the increment of the firing rate and the stimulus coherence, but we show that there is a positive correlation with the amplitude of the peristimulus time histogram. The latter argues that the observed facilitation of the neural response by the corticofugal pathway, at least in part, may be mediated through an appropriate ordering of the stimulus-evoked firing pattern, and the coherence enhancement is more relevant in gracilis nucleus than an increase of the number of spikes elicited by the tactile stimulus.


2019 ◽  
Author(s):  
Anand Krishnan ◽  
Avehi Singh ◽  
Krishnapriya Tamma

AbstractAnimal color patterns function in varied behavioral contexts including recognition, camouflage and even thermoregulation. The diversity of visual signals may be constrained by various factors, for example, dietary factors, and the composition of ambient environmental light (sensory drive). How have high-contrast and diverse signals evolved within these constraints? In four bird lineages, we present evidence that plumage colors cluster along a line in tetrachromatic color space. Additionally, we present evidence that this line represents complementary colors, which are defined as opposite sides of a line passing through the achromatic point (putatively for higher chromatic contrast). Finally, we present evidence that interspecific color variation over at least some regions of the body is not constrained by phylogenetic relatedness. Thus, we hypothesize that species-specific plumage patterns within these bird lineages evolve by swapping the distributions of a complementary color pair (or dark and light patches in one group, putatively representing an achromatic complementary axis). The relative role of chromatic and achromatic contrasts in discrimination may depend on the environment that each species inhabits.


IBRO Reports ◽  
2019 ◽  
Vol 6 ◽  
pp. S286
Author(s):  
Younginha Jung ◽  
Sungmoo Lee ◽  
Chae Eun Lee ◽  
Yoon-Kyu Song

Sign in / Sign up

Export Citation Format

Share Document