Increased glutaminolytic flux and activation of mitochondrial metabolism by BCL2 hyperactivity in lymphoma

2017 ◽  
Author(s):  
Kirandeep Kaur ◽  
Simar Singh ◽  
Helma Zecena ◽  
Laurent Dejean ◽  
Fabian V. Filipp

AbstractB-cell lymphoma 2 (BCL2) is an important apoptosis regulator during developmental and pathological states, and its overexpression is a key feature of several malignancies. Genomic data from The Cancer Genome Atlas (TCGA) reveals significant somatic copy number amplification, overexpression, and/or elevated protein activity of BCL2 in 50 % of diffuse large B-cell lymphoma (DLBC) patients. While its canonical role in mitochondria-directed apoptosis is well established, the effect of BCL2 on transcriptional and metabolic networks remains elusive. Using an established lymphocytic pro-B-cell line overexpressing BCL2, we identified dysregulated transcriptional and metabolic networks by transcriptomic profiling arrays. Elevated BCL2 levels affect transcription factor complexes and mitogenic programs of NF-κB/REL, HIF1A/ARNT, AP1, E2F, and STAT factors. Using stable isotope-assisted metabolic flux measurements we quantify that elevated BCL2 expression increases carbon utilization boosting cellular proliferation. Tumorigenic overexpression of BCL2 significantly increases glycolytic flux, glutaminolysis, and anaplerotic flux into the TCA cycle. At the same time, the mitochondrial acetyl-CoA pool is separated from the glycolytic one by inactivating the pyruvate dehydrogenase complex via transcriptional regulation of pyruvate dehydrogenase kinase (PDK3). As compensatory fuel, mitochondrial TCA cycle metabolism is supported by asparagine synthase (ASNS) and oxidative glutaminolysis creating targets for small molecule inhibition of glutaminase. Lymphoma cells overexpressing BCL2 contained more mitochondrial mass and were more sensitive to L-glutamine deprivation and glutaminase inhibition. Cells overexpressing a mutant BCL2 G145E, which is incapable of binding BH domain members, failed to increase proliferation, glycolysis, or glutaminolysis. Taken together, the oncogene BCL2 has the ability to ramp up a metabolic phenotype supporting proliferation independent of its anti-apoptotic role. The cellular model of BCL2 activation supports NF-KB-positive subtypes of DLBC and identifies metabolic bottlenecks with dependency on anaplerotic flux as an actionable BCL2 effector network in cancer.

2021 ◽  
Vol 22 (2) ◽  
pp. 764
Author(s):  
Russel J. Reiter ◽  
Ramaswamy Sharma ◽  
Sergio Rosales-Corral

Glucose is an essential nutrient for every cell but its metabolic fate depends on cellular phenotype. Normally, the product of cytosolic glycolysis, pyruvate, is transported into mitochondria and irreversibly converted to acetyl coenzyme A by pyruvate dehydrogenase complex (PDC). In some pathological cells, however, pyruvate transport into the mitochondria is blocked due to the inhibition of PDC by pyruvate dehydrogenase kinase. This altered metabolism is referred to as aerobic glycolysis (Warburg effect) and is common in solid tumors and in other pathological cells. Switching from mitochondrial oxidative phosphorylation to aerobic glycolysis provides diseased cells with advantages because of the rapid production of ATP and the activation of pentose phosphate pathway (PPP) which provides nucleotides required for elevated cellular metabolism. Molecules, called glycolytics, inhibit aerobic glycolysis and convert cells to a healthier phenotype. Glycolytics often function by inhibiting hypoxia-inducible factor-1α leading to PDC disinhibition allowing for intramitochondrial conversion of pyruvate into acetyl coenzyme A. Melatonin is a glycolytic which converts diseased cells to the healthier phenotype. Herein we propose that melatonin’s function as a glycolytic explains its actions in inhibiting a variety of diseases. Thus, the common denominator is melatonin’s action in switching the metabolic phenotype of cells.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1731 ◽  
Author(s):  
Carina Neitzel ◽  
Philipp Demuth ◽  
Simon Wittmann ◽  
Jörg Fahrer

Colorectal cancer (CRC) is among the most frequent cancer entities worldwide. Multiple factors are causally associated with CRC development, such as genetic and epigenetic alterations, inflammatory bowel disease, lifestyle and dietary factors. During malignant transformation, the cellular energy metabolism is reprogrammed in order to promote cancer cell growth and proliferation. In this review, we first describe the main alterations of the energy metabolism found in CRC, revealing the critical impact of oncogenic signaling and driver mutations in key metabolic enzymes. Then, the central role of mitochondria and the tricarboxylic acid (TCA) cycle in this process is highlighted, also considering the metabolic crosstalk between tumor and stromal cells in the tumor microenvironment. The identified cancer-specific metabolic transformations provided new therapeutic targets for the development of small molecule inhibitors. Promising agents are in clinical trials and are directed against enzymes of the TCA cycle, including isocitrate dehydrogenase, pyruvate dehydrogenase kinase, pyruvate dehydrogenase complex (PDC) and α-ketoglutarate dehydrogenase (KGDH). Finally, we focus on the α-lipoic acid derivative CPI-613, an inhibitor of both PDC and KGDH, and delineate its anti-tumor effects for targeted therapy.


2012 ◽  
Vol 287 (42) ◽  
pp. 35153-35160 ◽  
Author(s):  
Thomas R. Hurd ◽  
Yvonne Collins ◽  
Irina Abakumova ◽  
Edward T. Chouchani ◽  
Bartlomiej Baranowski ◽  
...  

Reactive oxygen species are byproducts of mitochondrial respiration and thus potential regulators of mitochondrial function. Pyruvate dehydrogenase kinase 2 (PDHK2) inhibits the pyruvate dehydrogenase complex, thereby regulating entry of carbohydrates into the tricarboxylic acid (TCA) cycle. Here we show that PDHK2 activity is inhibited by low levels of hydrogen peroxide (H2O2) generated by the respiratory chain. This occurs via reversible oxidation of cysteine residues 45 and 392 on PDHK2 and results in increased pyruvate dehydrogenase complex activity. H2O2 derives from superoxide (O2̇̄), and we show that conditions that inhibit PDHK2 also inactivate the TCA cycle enzyme, aconitase. These findings suggest that under conditions of high mitochondrial O2̇̄ production, such as may occur under nutrient excess and low ATP demand, the increase in O2̇̄ and H2O2 may provide feedback signals to modulate mitochondrial metabolism.


2015 ◽  
Vol 21 ◽  
pp. 153-154
Author(s):  
Abhijana Karunakaran ◽  
Kadapalakere Reddy ◽  
Anshu Alok ◽  
Manav Batra ◽  
Ajay Chaudhuri ◽  
...  
Keyword(s):  
B Cell ◽  

Praxis ◽  
2016 ◽  
Vol 105 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Andreas Lohri

Zusammenfassung. Maligne Lymphome unterteilen sich zwar in über 60 Entitäten, das grosszellige B-Zell-Lymphom, das follikuläre Lymphom, der Hodgkin und das Mantelzell-Lymphom machen aber mehr als die Hälfte aller Lymphome aus. Im revidierten Ann Arbor staging system gelten die Suffixe «A» und «B» nur noch für den Hodgkin. «E» erscheint nur noch bei Stadien I und II. Eine Knochenmarksuntersuchung wird beim Hodgkin nicht mehr verlangt, beim DLBCL (Diffuse large B cell lymphoma) nur, falls das PET keinen Knochenmark-Befall zeigt. Der PET-Untersuchung, speziell dem Interim-PET, kommt eine entscheidende Bedeutung zu. PET-gesteuerte Therapien führen zu weniger Toxizität. Gezielt wirkende Medikamente mit eindrücklicher Wirksamkeit wurden neu zugelassen. Deren Kosten sind hoch. Eine strahlen- und chemotherapiefreie Behandlung maligner Lymphome wird in Zukunft möglich sein.


Sign in / Sign up

Export Citation Format

Share Document