scholarly journals Programmable transport of micro- and nanoparticles by Paramecium caudatum

2017 ◽  
Author(s):  
Richard Mayne ◽  
Jack Morgan ◽  
Neil Phillips ◽  
James Whiting ◽  
Andrew Adamatzky

AbstractWe exploit chemo- and galvanotactic behaviour of Paramecium caudatum to design a hybrid device that allows for controlled uptake, transport and deposition of environmental micro- and nanoparticulates in an aqueous medium. Manipulation of these objects is specific, programmable and parallel. We demonstrate how device operation and output interpretation may be automated via a DIY low-cost fluorescence spectrometer, driven by a microprocessor board. The applications of the device presented range from collection and detoxification of environmental contaminants (e.g. nanoparticles), to micromixing, to natural expressions of computer logic.

2019 ◽  
Author(s):  
Chem Int

The removal of Cd(II) and Pb(II) ions from aqueous medium was studied using potato peels biomass. The adsorption process was evaluated using Atomic Absorption Spectrophotometer (AAS). The Vibrational band of the potato peels was studied using Fourier Transform Infrared Spectroscopy (FTIR). The adsorption process was carried out with respect to concentration, time, pH, particle size and the thermodynamic evaluation of the process was carried at temperatures of 30, 40, 50 and 60(0C), respectively. The FTIR studies revealed that the potato peels was composed of –OH, -NH, –C=N, –C=C and –C-O-C functional groups. The optimum removal was obtained at pH 8 and contact time of 20 min. The adsorption process followed Freundlich adsorption and pseudo second-order kinetic models with correlation coefficients (R2) greater than 0.900. The equilibrium adsorption capacity showed that Pb(II) ion was more adsorbed on the surface of the potato peels biomass versus Cd (II) ion (200.91 mg/g > 125.00 mg/g). The thermodynamic studies indicated endothermic, dissociative mechanism and spontaneous adsorption process. This study shows that sweet potato peels is useful as a low-cost adsorbent for the removal of Cd(II) and Pb(II) ions from aqueous medium.


2021 ◽  
Author(s):  
Venkataramanan Mahalingam ◽  
Sourav Ghosh ◽  
Rajkumar Jana ◽  
Sagar Ganguli ◽  
Harish Reddy Inta ◽  
...  

The quest for developing next-generation non-precious electrocatalyst is getting aroused in recent times. Herein, we have designed and developed a low cost electrocatalyst by ligand-assisted synthetic strategy in aqueous medium....


2014 ◽  
Vol 936 ◽  
pp. 829-833
Author(s):  
Hai Song ◽  
Xing Hai Yu ◽  
Xiao Qin Zhang ◽  
Gui Fang Yan ◽  
Yuan Zhi Zhen

The purpose of this work is to prepare a low-cost biosorbent,Porous Magnetic/Chitosan Resin(MCR), and determine the ability of this biosorbent to removing Ni (II) ion from aqueous medium. Both kinetics and thermodynamic parameters of the adsorption process were also estimated. The thermodynamic parameters indicated an exothermic spontaneous process and the kinetics followed the second-order adsorption process.


2008 ◽  
Vol 90 (1) ◽  
pp. 66-70 ◽  
Author(s):  
Mohd. Masood Hussain ◽  
Nageswara Rao Amanchi ◽  
Venkata Ramanaiah Solanki ◽  
Mohan Bhagavathi

2021 ◽  
Vol 232 (11) ◽  
Author(s):  
Adneia de Fátima Abreu Venceslau ◽  
Andressa Campos Mendonça ◽  
Lucas Bragança Carvalho ◽  
Guilherme Max Dias Ferreira ◽  
Sergio Scherrer Thomasi ◽  
...  

2017 ◽  
Vol 41 (6) ◽  
pp. 648-664 ◽  
Author(s):  
Sérgio Henrique Godinho Silva ◽  
Anita Fernanda dos Santos Teixeira ◽  
Michele Duarte de Menezes ◽  
Luiz Roberto Guimarães Guilherme ◽  
Fatima Maria de Souza Moreira ◽  
...  

ABSTRACT Determination of soil properties helps in the correct management of soil fertility. The portable X-ray fluorescence spectrometer (pXRF) has been recently adopted to determine total chemical element contents in soils, allowing soil property inferences. However, these studies are still scarce in Brazil and other countries. The objectives of this work were to predict soil properties using pXRF data, comparing stepwise multiple linear regression (SMLR) and random forest (RF) methods, as well as mapping and validating soil properties. 120 soil samples were collected at three depths and submitted to laboratory analyses. pXRF was used in the samples and total element contents were determined. From pXRF data, SMLR and RF were used to predict soil laboratory results, reflecting soil properties, and the models were validated. The best method was used to spatialize soil properties. Using SMLR, models had high values of R² (≥0.8), however the highest accuracy was obtained in RF modeling. Exchangeable Ca, Al, Mg, potential and effective cation exchange capacity, soil organic matter, pH, and base saturation had adequate adjustment and accurate predictions with RF. Eight out of the 10 soil properties predicted by RF using pXRF data had CaO as the most important variable helping predictions, followed by P2O5, Zn and Cr. Maps generated using RF from pXRF data had high accuracy for six soil properties, reaching R2 up to 0.83. pXRF in association with RF can be used to predict soil properties with high accuracy at low cost and time, besides providing variables aiding digital soil mapping.


Sign in / Sign up

Export Citation Format

Share Document