scholarly journals Coalescence and linkage disequilibrium in facultatively sexual diploids

2017 ◽  
Author(s):  
Matthew Hartfield ◽  
Stephen I. Wright ◽  
Aneil F. Agrawal

AbstractUnder neutrality, linkage disequilibrium (LD) results from physically linked sites having non-independent coalescent histories. In obligately sexual organisms, meiotic recombination is the dominant force separating linked variants from one another, and thus in determining the decay of LD with physical distance. In facultatively sexual diploid organisms that principally reproduce clonally, mechanisms of mitotic exchange are expected to become relatively more important in shaping LD. Here we outline mathematical and computational models of a facultative-sex coalescent process that includes meiotic and mitotic recombination, via both crossovers and gene conversion, to determine how LD is affected with facultative sex. We demonstrate that the degree to which LD is broken down by meiotic recombination simply scales with the probability of sex if it is sufficiently high (much greater than 1/N for N the population size). However, with very rare sex (occurring with frequency on the order of 1/N), mitotic gene conversion plays a particularly important and complicated role because it both breaks down associations between sites and removes within-individual diversity. Strong population structure under rare sex leads to lower average LD values than in panmictic populations, due to the influence of low-frequency polymorphisms created by allelic sequence divergence acting in individual subpopulations. These analyses provide information on how to interpret observed LD patterns in facultative sexuals, and determine what genomic forces are likely to shape them.

1986 ◽  
Vol 6 (11) ◽  
pp. 3685-3693 ◽  
Author(s):  
B Y Ahn ◽  
D M Livingston

Plasmids capable of undergoing genetic exchange in mitotically dividing Saccharomyces cerevisiae cells were used to measure the length of gene conversion events, to determine patterns of coconversion when multiple markers were present, and to correlate the incidence of reciprocal recombination with the length of conversion tracts. To construct such plasmids, restriction site linkers were inserted both within the HIS3 gene and in the flanking sequences, and two different his3- alleles were placed in a vector. Characterization of the genetic exchanges in these plasmids showed that most occur with the conversion of one his3- allele. Many of these events included coconversions in which more than one marker along the allelic sequence was replaced. The frequency of coconversion decreased with the distance between two markers such that markers further than 1 kilobase apart were infrequently coconverted. From these results the average length of conversion was determined to be approximately 0.5 kilobase. Examination of coconversions involving three or more markers revealed an almost obligatory, simultaneous coconversion pattern of all markers. Thus, when two markers which flank an intervening marker are converted, the intervening marker is 20 times more likely to be converted than to remain unchanged. The results of these studies also showed that the incidence of reciprocal recombination, which accompanies more than 20% of the conversion events, is more frequent when the conversion tract is longer than average.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Pablo Federico Roncallo ◽  
Adelina Olga Larsen ◽  
Ana Laura Achilli ◽  
Carolina Saint Pierre ◽  
Cristian Andrés Gallo ◽  
...  

Abstract Background Durum wheat (Triticum turgidum L. ssp. durum Desf. Husn) is the main staple crop used to make pasta products worldwide. Under the current climate change scenarios, genetic variability within a crop plays a crucial role in the successful release of new varieties with high yields and wide crop adaptation. In this study we evaluated a durum wheat collection consisting of 197 genotypes that mainly comprised a historical set of Argentinian germplasm but also included worldwide accessions. Results We assessed the genetic diversity, population structure and linkage disequilibrium (LD) patterns in this collection using a 35 K SNP array. The level of polymorphism was considered, taking account of the frequent and rare allelic variants. A total of 1547 polymorphic SNPs was located within annotated genes. Genetic diversity in the germplasm collection increased slightly from 1915 to 2010. However, a reduction in genetic diversity using SNPs with rare allelic variants was observed after 1979. However, larger numbers of rare private alleles were observed in the 2000–2009 period, indicating that a high reservoir of rare alleles is still present among the recent germplasm in a very low frequency. The percentage of pairwise loci in LD in the durum genome was low (13.4%) in our collection. Overall LD and the high (r2 > 0.7) or complete (r2 = 1) LD presented different patterns in the chromosomes. The LD increased over three main breeding periods (1915–1979, 1980–1999 and 2000–2020). Conclusions Our results suggest that breeding and selection have impacted differently on the A and B genomes, particularly on chromosome 6A and 2A. The collection was structured in five sub-populations and modern Argentinian accessions (cluster Q4) which were clearly differentiated. Our study contributes to the understanding of the complexity of Argentinian durum wheat germplasm and to derive future breeding strategies enhancing the use of genetic diversity in a more efficient and targeted way.


1986 ◽  
Vol 6 (11) ◽  
pp. 3685-3693
Author(s):  
B Y Ahn ◽  
D M Livingston

Plasmids capable of undergoing genetic exchange in mitotically dividing Saccharomyces cerevisiae cells were used to measure the length of gene conversion events, to determine patterns of coconversion when multiple markers were present, and to correlate the incidence of reciprocal recombination with the length of conversion tracts. To construct such plasmids, restriction site linkers were inserted both within the HIS3 gene and in the flanking sequences, and two different his3- alleles were placed in a vector. Characterization of the genetic exchanges in these plasmids showed that most occur with the conversion of one his3- allele. Many of these events included coconversions in which more than one marker along the allelic sequence was replaced. The frequency of coconversion decreased with the distance between two markers such that markers further than 1 kilobase apart were infrequently coconverted. From these results the average length of conversion was determined to be approximately 0.5 kilobase. Examination of coconversions involving three or more markers revealed an almost obligatory, simultaneous coconversion pattern of all markers. Thus, when two markers which flank an intervening marker are converted, the intervening marker is 20 times more likely to be converted than to remain unchanged. The results of these studies also showed that the incidence of reciprocal recombination, which accompanies more than 20% of the conversion events, is more frequent when the conversion tract is longer than average.


Genetics ◽  
2002 ◽  
Vol 161 (3) ◽  
pp. 1269-1278 ◽  
Author(s):  
Bernhard Haubold ◽  
Jürgen Kroymann ◽  
Andreas Ratzka ◽  
Thomas Mitchell-Olds ◽  
Thomas Wiehe

Abstract Arabidopsis thaliana is a highly selfing plant that nevertheless appears to undergo substantial recombination. To reconcile its selfing habit with the observations of recombination, we have sampled the genetic diversity of A. thaliana at 14 loci of ~500 bp each, spread across 170 kb of genomic sequence centered on a QTL for resistance to herbivory. A total of 170 of the 6321 nucleotides surveyed were polymorphic, with 169 being biallelic. The mean silent genetic diversity (πs) varied between 0.001 and 0.03. Pairwise linkage disequilibria between the polymorphisms were negatively correlated with distance, although this effect vanished when only pairs of polymorphisms with four haplotypes were included in the analysis. The absence of a consistent negative correlation between distance and linkage disequilibrium indicated that gene conversion might have played an important role in distributing genetic diversity throughout the region. We tested this by coalescent simulations and estimate that up to 90% of recombination is due to gene conversion.


Genetics ◽  
2002 ◽  
Vol 162 (2) ◽  
pp. 987-991 ◽  
Author(s):  
Gilean A T McVean

Abstract The degree of association between alleles at different loci, or linkage disequilibrium, is widely used to infer details of evolutionary processes. Here I explore how associations between alleles relate to properties of the underlying genealogy of sequences. Under the neutral, infinite-sites assumption I show that there is a direct correspondence between the covariance in coalescence times at different parts of the genome and the degree of linkage disequilibrium. These covariances can be calculated exactly under the standard neutral model and by Monte Carlo simulation under different demographic models. I show that the effects of population growth, population bottlenecks, and population structure on linkage disequilibrium can be described through their effects on the covariance in coalescence times.


2010 ◽  
Vol 10 (1) ◽  
pp. 6 ◽  
Author(s):  
Shi Wang ◽  
Lingling Zhang ◽  
Jingjie Hu ◽  
Zhenmin Bao ◽  
Zhanjiang Liu

2021 ◽  
Author(s):  
Dipti Vinayak Vernekar ◽  
Giordano Reginato ◽  
Céline Adam ◽  
Lepakshi Ranjha ◽  
Florent Dingli ◽  
...  

Abstract Meiotic recombination ensures proper chromosome segregation to form viable gametes and results in gene conversions events between homologs. Conversion tracts are shorter in meiosis than in mitotically dividing cells. This results at least in part from the binding of a complex, containing the Mer3 helicase and the MutLβ heterodimer, to meiotic recombination intermediates. The molecular actors inhibited by this complex are elusive. The Pif1 DNA helicase is known to stimulate DNA polymerase delta (Pol δ) -mediated DNA synthesis from D-loops, allowing long synthesis required for break-induced replication. We show that Pif1 is also recruited genome wide to meiotic DNA double-strand break (DSB) sites. We further show that Pif1, through its interaction with PCNA, is required for the long gene conversions observed in the absence of MutLβ recruitment to recombination sites. In vivo, Mer3 interacts with the PCNA clamp loader RFC, and in vitro, Mer3-MutLβ ensemble inhibits Pif1-stimulated D-loop extension by Pol δ and RFC-PCNA. Mechanistically, our results suggest that Mer3-MutLβ may compete with Pif1 for binding to RFC-PCNA. Taken together, our data show that Pif1’s activity that promotes meiotic DNA repair synthesis is restrained by the Mer3-MutLβ ensemble which in turn prevents long gene conversion tracts and possibly associated mutagenesis.


1994 ◽  
Vol 25 (5) ◽  
pp. 472-474 ◽  
Author(s):  
Viera Vlčková ◽  
Luba Černáková ◽  
Eva Farkašová ◽  
Jela Brozmanová

Sign in / Sign up

Export Citation Format

Share Document