scholarly journals Characterizing the response to face pareidolia in human category-selective visual cortex

2017 ◽  
Author(s):  
Susan G Wardle ◽  
Kiley Seymour ◽  
Jessica Taubert

AbstractThe neural mechanisms underlying face and object recognition are understood to originate in ventral occipital-temporal cortex. A key feature of the functional architecture of the visual ventral pathway is its category-selectivity, yet it is unclear how category-selective regions process ambiguous visual input which violates category boundaries. One example is the spontaneous misperception of faces in inanimate objects such as the Man in the Moon, in which an object belongs to more than one category and face perception is divorced from its usual diagnostic visual features. We used fMRI to investigate the representation of illusory faces in category-selective regions. The perception of illusory faces was decodable from activation patterns in the fusiform face area (FFA) and lateral occipital complex (LOC), but not from other visual areas. Further, activity in FFA was strongly modulated by the perception of illusory faces, such that even objects with vastly different visual features were represented similarly if all images contained an illusory face. The results show that the FFA is broadly-tuned for face detection, not finely-tuned to the homogenous visual properties that typically distinguish faces from other objects. A complete understanding of high-level vision will require explanation of the mechanisms underlying natural errors of face detection.

i-Perception ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 204166951984004 ◽  
Author(s):  
Jordy Thielen ◽  
Sander E. Bosch ◽  
Tessa M. van Leeuwen ◽  
Marcel A. J. van Gerven ◽  
Rob van Lier

Amodal completion is the phenomenon of perceiving completed objects even though physically they are partially occluded. In this review, we provide an extensive overview of the results obtained from a variety of neuroimaging studies on the neural correlates of amodal completion. We discuss whether low-level and high-level cortical areas are implicated in amodal completion; provide an overview of how amodal completion unfolds over time while dissociating feedforward, recurrent, and feedback processes; and discuss how amodal completion is represented at the neuronal level. The involvement of low-level visual areas such as V1 and V2 is not yet clear, while several high-level structures such as the lateral occipital complex and fusiform face area seem invariant to occlusion of objects and faces, respectively, and several motor areas seem to code for object permanence. The variety of results on the timing of amodal completion hints to a mixture of feedforward, recurrent, and feedback processes. We discuss whether the invisible parts of the occluded object are represented as if they were visible, contrary to a high-level representation. While plenty of questions on amodal completion remain, this review presents an overview of the neuroimaging findings reported to date, summarizes several insights from computational models, and connects research of other perceptual completion processes such as modal completion. In all, it is suggested that amodal completion is the solution to deal with various types of incomplete retinal information, and highly depends on stimulus complexity and saliency, and therefore also give rise to a variety of observed neural patterns.


Neuron ◽  
2020 ◽  
Author(s):  
Amarender R. Bogadhi ◽  
Leor N. Katz ◽  
Anil Bollimunta ◽  
David A. Leopold ◽  
Richard J. Krauzlis

2008 ◽  
Vol 99 (5) ◽  
pp. 2456-2469 ◽  
Author(s):  
Dirk Ostwald ◽  
Judith M. Lam ◽  
Sheng Li ◽  
Zoe Kourtzi

Extensive psychophysical and computational work proposes that the perception of coherent and meaningful structures in natural images relies on neural processes that convert information about local edges in primary visual cortex to complex object features represented in the temporal cortex. However, the neural basis of these mid-level vision mechanisms in the human brain remains largely unknown. Here, we examine functional MRI (fMRI) selectivity for global forms in the human visual pathways using sensitive multivariate analysis methods that take advantage of information across brain activation patterns. We use Glass patterns, parametrically varying the perceived global form (concentric, radial, translational) while ensuring that the local statistics remain similar. Our findings show a continuum of integration processes that convert selectivity for local signals (orientation, position) in early visual areas to selectivity for global form structure in higher occipitotemporal areas. Interestingly, higher occipitotemporal areas discern differences in global form structure rather than low-level stimulus properties with higher accuracy than early visual areas while relying on information from smaller but more selective neural populations (smaller voxel pattern size), consistent with global pooling mechanisms of local orientation signals. These findings suggest that the human visual system uses a code of increasing efficiency across stages of analysis that is critical for the successful detection and recognition of objects in complex environments.


2011 ◽  
Vol 23 (7) ◽  
pp. 1765-1780 ◽  
Author(s):  
Alison J. Wiggett ◽  
Paul E. Downing

A fundamental question for social cognitive neuroscience is how and where in the brain the identities and actions of others are represented. Here we present a replication and extension of a study by Kable and Chatterjee [Kable, J. W., & Chatterjee, A. Specificity of action representations in the lateral occipito-temporal cortex. Journal of Cognitive Neuroscience, 18, 1498–1517, 2006] examining the role of occipito-temporal cortex in these processes. We presented full-cue movies of actors performing whole-body actions and used fMRI to test for action- and identity-specific adaptation effects. We examined a series of functionally defined regions, including the extrastriate and fusiform body areas, the fusiform face area, the parahippocampal place area, the lateral occipital complex, the right posterior superior temporal sulcus, and motion-selective area hMT+. These regions were analyzed with both standard univariate measures as well as multivoxel pattern analyses. Additionally, we performed whole-brain tests for significant adaptation effects. We found significant action-specific adaptation in many areas, but no evidence for identity-specific adaptation. We argue that this finding could be explained by differences in the familiarity of the stimuli presented: The actions shown were familiar but the actors performing the actions were unfamiliar. However, in contrast to previous findings, we found that the action adaptation effect could not be conclusively tied to specific functionally defined regions. Instead, our results suggest that the adaptation to previously seen actions across identities is a widespread effect, evident across lateral and ventral occipito-temporal cortex.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1565 ◽  
Author(s):  
Pieter Moors ◽  
Johan Wagemans ◽  
Lee de-Wit

The extent to which perceptually suppressed face stimuli are still processed has been extensively studied using the continuous flash suppression paradigm (CFS). Studies that rely on breaking CFS (b-CFS), in which the time it takes for an initially suppressed stimulus to become detectable is measured, have provided evidence for relatively complex processing of invisible face stimuli. In contrast, adaptation and neuroimaging studies have shown that perceptually suppressed faces are only processed for a limited set of features, such as its general shape. In this study, we asked whether perceptually suppressed face stimuli presented in their commonly experienced configuration would break suppression faster than when presented in an uncommonly experienced configuration. This study was motivated by a recent neuroimaging study showing that commonly experienced face configurations are more strongly represented in the fusiform face area. Our findings revealed that faces presented in commonly experienced configurations indeed broke suppression faster, yet this effect did not interact with face inversion suggesting that, in a b-CFS context, perceptually suppressed faces are potentially not processed by specialized (high-level) face processing mechanisms. Rather, our pattern of results is consistent with an interpretation based on the processing of more basic visual properties such as convexity.


2014 ◽  
Vol 26 (3) ◽  
pp. 490-500 ◽  
Author(s):  
Yaara Erez ◽  
Galit Yovel

Target objects required for goal-directed behavior are typically embedded within multiple irrelevant objects that may interfere with their encoding. Most neuroimaging studies of high-level visual cortex have examined the representation of isolated objects, and therefore, little is known about how surrounding objects influence the neural representation of target objects. To investigate the effect of different types of clutter on the distributed responses to target objects in high-level visual areas, we used fMRI and manipulated the type of clutter. Specifically, target objects (i.e., a face and a house) were presented either in isolation, in the presence of a homogeneous (identical objects from another category) clutter (“pop-out” display), or in the presence of a heterogeneous (different objects) clutter, while participants performed a target identification task. Using multivoxel pattern analysis (MVPA) we found that in the posterior fusiform object area a heterogeneous but not homogeneous clutter interfered with decoding of the target objects. Furthermore, multivoxel patterns evoked by isolated objects were more similar to multivoxel patterns evoked by homogenous compared with heterogeneous clutter in the lateral occipital and posterior fusiform object areas. Interestingly, there was no effect of clutter on the neural representation of the target objects in their category-selective areas, such as the fusiform face area and the parahippocampal place area. Our findings show that the variation among irrelevant surrounding objects influences the neural representation of target objects in the object general area, but not in object category-selective cortex, where the representation of target objects is invariant to their surroundings.


2019 ◽  
Author(s):  
Amarender R. Bogadhi ◽  
Leor N. Katz ◽  
Anil Bollimunta ◽  
David A. Leopold ◽  
Richard J. Krauzlis

AbstractThe evolution of the primate brain is marked by a dramatic increase in the number of neocortical areas that process visual information 1. This cortical expansion supports two hallmarks of high-level primate vision – the ability to selectively attend to particular visual features 2 and the ability to recognize a seemingly limitless number of complex visual objects 3. Given their prominent roles in high-level vision for primates, it is commonly assumed that these cortical processes supersede the earlier versions of these functions accomplished by the evolutionarily older brain structures that lie beneath the cortex. Contrary to this view, here we show that the superior colliculus (SC), a midbrain structure conserved across all vertebrates 4, is necessary for the normal expression of attention-related modulation and object selectivity in a newly identified region of macaque temporal cortex. Using a combination of psychophysics, causal perturbations and fMRI, we identified a localized region in the temporal cortex that is functionally dependent on the SC. Targeted electrophysiological recordings in this cortical region revealed neurons with strong attention-related modulation that was markedly reduced during attention deficits caused by SC inactivation. Many of these neurons also exhibited selectivity for particular visual objects, and this selectivity was also reduced during SC inactivation. Thus, the SC exerts a causal influence on high-level visual processing in cortex at a surprisingly late stage where attention and object selectivity converge, perhaps determined by the elemental forms of perceptual processing the SC has supported since before there was a neocortex.


2014 ◽  
Vol 112 (8) ◽  
pp. 1963-1983 ◽  
Author(s):  
Ben Vermaercke ◽  
Florian J. Gerich ◽  
Ellen Ytebrouck ◽  
Lutgarde Arckens ◽  
Hans P. Op de Beeck ◽  
...  

Recent studies have revealed a surprising degree of functional specialization in rodent visual cortex. Anatomically, suggestions have been made about the existence of hierarchical pathways with similarities to the ventral and dorsal pathways in primates. Here we aimed to characterize some important functional properties in part of the supposed “ventral” pathway in rats. We investigated the functional properties along a progression of five visual areas in awake rats, from primary visual cortex (V1) over lateromedial (LM), latero-intermediate (LI), and laterolateral (LL) areas up to the newly found lateral occipito-temporal cortex (TO). Response latency increased >20 ms from areas V1/LM/LI to areas LL and TO. Orientation and direction selectivity for the used grating patterns increased gradually from V1 to TO. Overall responsiveness and selectivity to shape stimuli decreased from V1 to TO and was increasingly dependent upon shape motion. Neural similarity for shapes could be accounted for by a simple computational model in V1, but not in the other areas. Across areas, we find a gradual change in which stimulus pairs are most discriminable. Finally, tolerance to position changes increased toward TO. These findings provide unique information about possible commonalities and differences between rodents and primates in hierarchical cortical processing.


2019 ◽  
Author(s):  
Daniel Lindh ◽  
Ilja G. Sligte ◽  
Sara Assecondi ◽  
Kimron L. Shapiro ◽  
Ian Charest

AbstractConscious perception is crucial for adaptive behaviour yet access to consciousness varies for different types of objects. The visual system comprises regions with widely distributed category information and exemplar-level representations that cluster according to category. Does this categorical organisation in the brain provide insight into object-specific access to consciousness? We address this question using the Attentional Blink (AB) approach with visual objects as targets. We find large differences across categories in the AB then employ activation patterns extracted from a deep convolutional neural network (DCNN) to reveal that these differences depend on mid- to high-level, rather than low-level, visual features. We further show that these visual features can be used to explain variance in performance across trials. Taken together, our results suggest that the specific organisation of the higher-tier visual system underlies important functions relevant for conscious perception of differing natural images.


2015 ◽  
Vol 15 (12) ◽  
pp. 751
Author(s):  
Joan Liu-Shuang ◽  
Jacques Jonas ◽  
Justin Ales ◽  
Anthony Norcia ◽  
Louis Maillard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document