Representation of Action in Occipito-temporal Cortex

2011 ◽  
Vol 23 (7) ◽  
pp. 1765-1780 ◽  
Author(s):  
Alison J. Wiggett ◽  
Paul E. Downing

A fundamental question for social cognitive neuroscience is how and where in the brain the identities and actions of others are represented. Here we present a replication and extension of a study by Kable and Chatterjee [Kable, J. W., & Chatterjee, A. Specificity of action representations in the lateral occipito-temporal cortex. Journal of Cognitive Neuroscience, 18, 1498–1517, 2006] examining the role of occipito-temporal cortex in these processes. We presented full-cue movies of actors performing whole-body actions and used fMRI to test for action- and identity-specific adaptation effects. We examined a series of functionally defined regions, including the extrastriate and fusiform body areas, the fusiform face area, the parahippocampal place area, the lateral occipital complex, the right posterior superior temporal sulcus, and motion-selective area hMT+. These regions were analyzed with both standard univariate measures as well as multivoxel pattern analyses. Additionally, we performed whole-brain tests for significant adaptation effects. We found significant action-specific adaptation in many areas, but no evidence for identity-specific adaptation. We argue that this finding could be explained by differences in the familiarity of the stimuli presented: The actions shown were familiar but the actors performing the actions were unfamiliar. However, in contrast to previous findings, we found that the action adaptation effect could not be conclusively tied to specific functionally defined regions. Instead, our results suggest that the adaptation to previously seen actions across identities is a widespread effect, evident across lateral and ventral occipito-temporal cortex.

2008 ◽  
Vol 19 (1-2) ◽  
pp. 75-79 ◽  
Author(s):  
Laurence Dricot ◽  
Bettina Sorger ◽  
Christine Schiltz ◽  
Rainer Goebel ◽  
Bruno Rossion

Two areas in the human occipito-temporal cortex respond preferentially to faces: ‘the fusiform face area’ (‘FFA’) and the ‘occipital face area’ (‘OFA’). However, it is unclear whether these areas have an exclusive role in processing faces, or if sub-maximal responses in other visual areas such as the lateral occipital complex (LOC) are also involved. To clarify this issue, we tested a brain-damaged patient (PS) presenting a face-selective impairment with functional magnetic resonance imaging (fMRI). The right hemisphere lesion of the prosoagnosic patient encompasses the ‘OFA’ but preserves the ‘FFA’ and LOC [14,16]. Using fMRI-adaptation, we found a larger response to different faces than repeated faces in the ventral part of the LOC both for normals and the patient, next to her right hemisphere lesion. This observation indicates that following prosopagnosia, areas that do not respond preferentially to faces such as the ventral part of the LOC (vLOC) may still be recruited to subtend residual perception of individual faces.


2011 ◽  
Vol 23 (8) ◽  
pp. 1987-1997 ◽  
Author(s):  
Flavia Mancini ◽  
Nadia Bolognini ◽  
Emanuela Bricolo ◽  
Giuseppe Vallar

The Müller-Lyer illusion occurs both in vision and in touch, and transfers cross-modally from vision to haptics [Mancini, F., Bricolo, E., & Vallar, G. Multisensory integration in the Müller-Lyer illusion: From vision to haptics. Quarterly Journal of Experimental Psychology, 63, 818–830, 2010]. Recent evidence suggests that the neural underpinnings of the Müller-Lyer illusion in the visual modality involve the bilateral lateral occipital complex (LOC) and right superior parietal cortex (SPC). Conversely, the neural correlates of the haptic and cross-modal illusions have never been investigated previously. Here we used repetitive TMS (rTMS) to address the causal role of the regions activated by the visual illusion in the generation of the visual, haptic, and cross-modal visuo-haptic illusory effects, investigating putative modality-specific versus cross-modal underlying processes. rTMS was administered to the right and the left hemisphere, over occipito-temporal cortex or SPC. rTMS over left and right occipito-temporal cortex impaired both unisensory (visual, haptic) and cross-modal processing of the illusion in a similar fashion. Conversely, rTMS interference over left and right SPC did not affect the illusion in any modality. These results demonstrate the causal involvement of bilateral occipito-temporal cortex in the representation of the visual, haptic, and cross-modal Müller-Lyer illusion, in favor of the hypothesis of shared underlying processes. This indicates that occipito-temporal cortex plays a cross-modal role in perception both of illusory and nonillusory shapes.


Perception ◽  
1980 ◽  
Vol 9 (4) ◽  
pp. 369-377 ◽  
Author(s):  
Marc Green

The predictive values of Fourier analysis and local-feature analysis of spatial stimuli were compared in an orientation-specific adaptation experiment. Observers adapted to checkerboard patterns, which have fundamental Fourier components oriented 45° away from the edges. Detection of gratings was found to be maximally impaired when fundamental Fourier components of adaptation and test patterns were in the same orientation and minimal when edges were aligned. The orientation spread and amount of adaptation effect were similar to that found in previous experiments which employed sinusoids as adaptation and test stimuli.


2016 ◽  
Vol 28 (8) ◽  
pp. 1178-1193 ◽  
Author(s):  
Bronson B. Harry ◽  
Katja Umla-Runge ◽  
Andrew D. Lawrence ◽  
Kim S. Graham ◽  
Paul E. Downing

Research on visual face perception has revealed a region in the ventral anterior temporal lobes, often referred to as the anterior temporal face patch (ATFP), which responds strongly to images of faces. To date, the selectivity of the ATFP has been examined by contrasting responses to faces against a small selection of categories. Here, we assess the selectivity of the ATFP in humans with a broad range of visual control stimuli to provide a stronger test of face selectivity in this region. In Experiment 1, participants viewed images from 20 stimulus categories in an event-related fMRI design. Faces evoked more activity than all other 19 categories in the left ATFP. In the right ATFP, equally strong responses were observed for both faces and headless bodies. To pursue this unexpected finding, in Experiment 2, we used multivoxel pattern analysis to examine whether the strong response to face and body stimuli reflects a common coding of both classes or instead overlapping but distinct representations. On a voxel-by-voxel basis, face and whole-body responses were significantly positively correlated in the right ATFP, but face and body-part responses were not. This finding suggests that there is shared neural coding of faces and whole bodies in the right ATFP that does not extend to individual body parts. In contrast, the same approach revealed distinct face and body representations in the right fusiform gyrus. These results are indicative of an increasing convergence of distinct sources of person-related perceptual information proceeding from the posterior to the anterior temporal cortex.


2017 ◽  
Author(s):  
Susan G Wardle ◽  
Kiley Seymour ◽  
Jessica Taubert

AbstractThe neural mechanisms underlying face and object recognition are understood to originate in ventral occipital-temporal cortex. A key feature of the functional architecture of the visual ventral pathway is its category-selectivity, yet it is unclear how category-selective regions process ambiguous visual input which violates category boundaries. One example is the spontaneous misperception of faces in inanimate objects such as the Man in the Moon, in which an object belongs to more than one category and face perception is divorced from its usual diagnostic visual features. We used fMRI to investigate the representation of illusory faces in category-selective regions. The perception of illusory faces was decodable from activation patterns in the fusiform face area (FFA) and lateral occipital complex (LOC), but not from other visual areas. Further, activity in FFA was strongly modulated by the perception of illusory faces, such that even objects with vastly different visual features were represented similarly if all images contained an illusory face. The results show that the FFA is broadly-tuned for face detection, not finely-tuned to the homogenous visual properties that typically distinguish faces from other objects. A complete understanding of high-level vision will require explanation of the mechanisms underlying natural errors of face detection.


2017 ◽  
Vol 48 (11) ◽  
pp. 1862-1871 ◽  
Author(s):  
Ł. Okruszek ◽  
M. Wordecha ◽  
M. Jarkiewicz ◽  
B. Kossowski ◽  
J. Lee ◽  
...  

BackgroundRecognition of communicative interactions is a complex social cognitive ability which is associated with a specific neural activity in healthy individuals. However, neural correlates of communicative interaction processing from whole-body motion have not been known in patients with schizophrenia (SCZ). Therefore, the current study aims to examine the neural activity associated with recognition of communicative interactions in SCZ by using displays of the dyadic interactions downgraded to minimalistic point-light presentations.MethodsTwenty-six healthy controls (HC) and 25 SCZ were asked to judge whether two agents presented only by point-light displays were communicating or acting independently. Task-related activity and functional connectivity of brain structures were examined with General Linear Model and Generalized Psychophysiological Interaction approach, respectively.ResultsHC were significantly more efficient in recognizing each type of action than SCZ. At the neural level, the activity of the right posterior superior temporal sulcus (pSTS) was observed to be higher in HC compared with SCZ for communicativev.individual action processing. Importantly, increased connectivity of the right pSTS with structures associated with mentalizing (left pSTS) and mirroring networks (left frontal areas) was observed in HC, but not in SCZ, during the presentation of social interactions.ConclusionUnder-recruitment of the right pSTS, a structure known to have a pivotal role in social processing, may also be of importance for higher-order social cognitive deficits in SCZ. Furthermore, decreased task-related connectivity of the right pSTS may result in reduced use of additional sources of information (for instance motor resonance signals) during social cognitive processing in schizophrenia.


2007 ◽  
Vol 19 (11) ◽  
pp. 1790-1802 ◽  
Author(s):  
Joseph M. DeGutis ◽  
Shlomo Bentin ◽  
Lynn C. Robertson ◽  
Mark D'Esposito

We used functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) to measure neural changes associated with training configural processing in congenital prosopagnosia, a condition in which face identification abilities are not properly developed in the absence of brain injury or visual problems. We designed a task that required discriminating faces by their spatial configuration and, after extensive training, prosopagnosic MZ significantly improved at face identification. Event-related potential results revealed that although the N170 was not selective for faces before training, its selectivity after training was normal. fMRI demonstrated increased functional connectivity between ventral occipital temporal face-selective regions (right occipital face area and right fusiform face area) that accompanied improvement in face recognition. Several other regions showed fMRI activity changes with training; the majority of these regions increased connectivity with face-selective regions. Together, the neural mechanisms associated with face recognition improvements involved strengthening early face-selective mechanisms and increased coordination between face-selective and nonselective regions, particularly in the right hemisphere.


2019 ◽  
Author(s):  
Jon Walbrin ◽  
Ioana Mihai ◽  
Julia Landsiedel ◽  
Kami Koldewyn

AbstractRecent evidence demonstrates that a region of the posterior superior temporal sulcus (pSTS) is selective to visually observed social interactions in adults. In contrast, we know comparatively little about neural responses to social interactions in children. Here, we used fMRI to ask whether the pSTS would be ‘tuned’ to social interactions in children at all, and if so, how selectivity might differ from adults. This was investigated not only in the pSTS, but also in socially-tuned regions in neighbouring temporal cortex: extrastriate body area (EBA), face-selective STS (STS-F), fusiform face area (FFA), and temporo-parietal junction (TPJ-M).Both children and adults showed selectivity to social interaction within right pSTS, while only adults showed selectivity on the left. Adults also showed both more focal and greater selectivity than children (6–12 years) bilaterally. Exploratory sub-group analyses showed that younger children (6–8 years), but not older children (9-12), are less selective than adults on the right, while there was a developmental trend (adults > older > younger) in left pSTS. These results suggest that, over development, the neural response to social interactions is characterized by increasingly more selective, more focal and more bilateral pSTS responses, a process that likely continues into adolescence.HighlightsChildren show less interaction selectivity in the pSTS than adultsAdults show bilateral pSTS selectivity, while children are more right-lateralizedExploratory findings suggest interaction selectivity in pSTS is more focally tuned in adults


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung Eun Kim ◽  
Jangyun Lee ◽  
Sae Yong Lee ◽  
Hae-Dong Lee ◽  
Jae Kun Shim ◽  
...  

AbstractThe purpose of this study was to investigate how the ball position along the mediolateral (M-L) direction of a golfer causes a chain effect in the ground reaction force, body segment and joint angles, and whole-body centre of mass during the golf swing. Twenty professional golfers were asked to complete five straight shots for each 5 different ball positions along M-L: 4.27 cm (ball diameter), 2.14 cm (ball radius), 0 cm (reference position at preferred ball position), – 2.14 cm, and – 4.27 cm, while their ground reaction force and body segment motions were captured. The dependant variables were calculated at 14 swing events from address to impact, and the differences between the ball positions were evaluated using Statistical Parametric Mapping. The left-sided ball positions at address showed a greater weight distribution on the left foot with a more open shoulder angle compared to the reference ball position, whereas the trend was reversed for the right-sided ball positions. These trends disappeared during the backswing and reappeared during the downswing. The whole-body centre of mass was also located towards the target for the left-sided ball positions throughout the golf swing compared to the reference ball position, whereas the trend was reversed for the right-sided ball positions. We have concluded that initial ball position at address can cause a series of chain effects throughout the golf swing.


Sign in / Sign up

Export Citation Format

Share Document