scholarly journals HMGA1 zebrafish co-orthologue hmga1b can modulate p53-dependent cellular responses but is unable to control the alternative splicing of psen1

2018 ◽  
Author(s):  
Seyed Hani Moussavi Nik ◽  
Morgan Newman ◽  
Amanda Lumsden ◽  
Tanya Jayne ◽  
Michael Lardelli

ABSTRACTThe HIGH MOBILITY GROUP AT-HOOK 1 (HMGA1) family of chromatin-binding proteins plays important roles in cellular responses to low oxygen. HMGA1 proteins regulate gene activity both in the nucleus and within mitochondria. They are expressed mainly during embryogenesis and their upregulation in cancerous cells indicates poor prognosis. The human HMGA1a isoform is upregulated under hypoxia via oxidative stress-dependent signalling and can then bind nascent transcripts of the familial Alzheimer’s disease gene PSEN2 to regulate alternative splicing to produce the truncated PSEN2 protein isoform PS2V. Zebrafish where hmga1a expression is induced by hypoxia to control splicing of the psen1 gene to produce the PS2V-equivalent isoform PS1IV. Zebrafish possess a second gene with apparent HMGA1 orthology, hmga1b. Here we investigate the predicted structure of Hmga1b protein and demonstrate it to be co-orthologous to human HMGA1 and most similar in structure to human isoform HMGA1c. We show that forced over-expression of either hmga1a or hmga1b mRNA can suppress the action of the cytotoxin hydroxyurea in stimulating cell death and transcription of the genes mdm2 and cdkn1a that, in humans, are controlled by p53. Our experimental data support an important role for HMGA1 proteins in modulation of p53-dependent responses and illuminate the evolutionary subfunctionalisation.

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 564
Author(s):  
Haruki Watanabe ◽  
Myoungsun Son

The disruption of the immune tolerance induces autoimmunity such as systemic lupus erythematosus and vasculitis. A chromatin-binding non-histone protein, high mobility group box 1 (HMGB1), is released from the nucleus to the extracellular milieu in particular environments such as autoimmunity, sepsis and hypoxia. Extracellular HMGB1 engages pattern recognition receptors, including Toll-like receptors (TLRs) and the receptor for advanced glycation endproducts (RAGE). While the HMGB1-RAGE axis drives inflammation in various diseases, recent studies also focus on the anti-inflammatory effects of HMGB1 and RAGE. This review discusses current perspectives on HMGB1 and RAGE’s roles in controlling inflammation and immune tolerance. We also suggest how RAGE heterodimers responding microenvironments functions in immune responses.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alyssa E. Johnson ◽  
Brian O. Orr ◽  
Richard D. Fetter ◽  
Armen J. Moughamian ◽  
Logan A. Primeaux ◽  
...  

AbstractMissense mutations in Valosin-Containing Protein (VCP) are linked to diverse degenerative diseases including IBMPFD, amyotrophic lateral sclerosis (ALS), muscular dystrophy and Parkinson’s disease. Here, we characterize a VCP-binding co-factor (SVIP) that specifically recruits VCP to lysosomes. SVIP is essential for lysosomal dynamic stability and autophagosomal–lysosomal fusion. SVIP mutations cause muscle wasting and neuromuscular degeneration while muscle-specific SVIP over-expression increases lysosomal abundance and is sufficient to extend lifespan in a context, stress-dependent manner. We also establish multiple links between SVIP and VCP-dependent disease in our Drosophila model system. A biochemical screen identifies a disease-causing VCP mutation that prevents SVIP binding. Conversely, over-expression of an SVIP mutation that prevents VCP binding is deleterious. Finally, we identify a human SVIP mutation and confirm the pathogenicity of this mutation in our Drosophila model. We propose a model for VCP disease based on the differential, co-factor-dependent recruitment of VCP to intracellular organelles.


2003 ◽  
Vol 2 (1) ◽  
pp. 163
Author(s):  
E. Lianos ◽  
D. Delakas ◽  
D. Arvanitis ◽  
D. Spandidos

2016 ◽  
Vol 62 (5) ◽  
pp. 544-554 ◽  
Author(s):  
D.D. Zhdanov ◽  
D.A. Vasina ◽  
E.V. Orlova ◽  
V.S. Orlova ◽  
M.V. Pokrovskaya ◽  
...  

Human telomerase catalytic subunit hTERT is subjected to alternative splicing results in loss of its function and leads to decrease of telomerase activity. However, very little is known about the mechanism of hTERT pre-mRNA alternative splicing. Apoptotic endonuclease EndoG is known to participate this process. The aim of this study was to determine the role of EndoG in regulation of hTERT alternative splicing. Increased expression of b-deletion splice variant was determined during EndoG over-expression in CaCo-2 cell line, after EndoG treatment of cell cytoplasm and nuclei and after nuclei incubation with EndoG digested cell RNA. hTERT alternative splicing was induced by 47-mer RNA oligonucleotide in naked nuclei and in cells after transfection. Identified long non-coding RNA, that is the precursor of 47-mer RNA oligonucleotide. Its size is 1754 nucleotides. Based on the results the following mechanism was proposed. hTERT pre-mRNA is transcribed from coding DNA strand while long non-coding RNA is transcribed from template strand of hTERT gene. EndoG digests long non-coding RNA and produces 47-mer RNA oligonucleotide complementary to hTERT pre-mRNA exon 8 and intron 8 junction place. Interaction of 47-mer RNA oligonucleotide and hTERT pre-mRNA causes alternative splicing.


2009 ◽  
Vol 87 (1) ◽  
pp. 127-137 ◽  
Author(s):  
Gabi Gerlitz ◽  
Robert Hock ◽  
Tetsuya Ueda ◽  
Michael Bustin

The dynamic interaction between nuclear proteins and chromatin leads to the functional plasticity necessary to mount adequate responses to regulatory signals. Here, we review the factors regulating the chromatin interactions of the high mobility group proteins (HMGs), an abundant and ubiquitous superfamily of chromatin-binding proteins in living cells. HMGs are highly mobile and interact with the chromatin fiber in a highly dynamic fashion, as part of a protein network. The major factors that affect the binding of HMGs to chromatin are operative at the level of the single nucleosome. These factors include structural features of the HMGs, competition with other chromatin-binding proteins for nucleosome binding sites, complex formation with protein partners, and post-translational modifications in the protein or in the chromatin-binding sites. The versatile modulation of the interaction between HMG proteins and chromatin plays a role in processes that establish the cellular phenotype.


1990 ◽  
Vol 10 (6) ◽  
pp. 2715-2722 ◽  
Author(s):  
G L Shen-Ong ◽  
R M Skurla ◽  
J D Owens ◽  
J F Mushinski

An alternative splicing event in which a portion of the intron bounded by the vE6 and vE7 exons with v-myb homology is included as an additional 363-nucleotide coding exon (termed E6A or coding exon 9A) has been described for normal and tumor murine cells that express myb. We show here that this alternative splicing event is conserved in human c-myb transcripts. In addition, another novel exon (termed E7A or coding exon 10A) is identified in human c-myb mRNAs expressed in normal and tumor cells. Although the myb protein isoform encoded by murine E6A-containing mRNA is larger than the major c-myb protein, the predicted products of both forms of human alternatively spliced myb transcripts are 3'-truncated myb proteins that terminate in the alternative exons. These proteins are predicted to lack the same carboxy-terminal domains as the viral myb proteins encoded by avian myeloblastosis virus and E26 virus. The junction sequences that flank these exons closely resemble the consensus splice donor and splice acceptor sequences, yet the alternative transcripts are less abundant than is the major form of c-myb transcripts. The contribution that alternative splicing events in c-myb expression may make on c-myb function remains to be elucidated.


Author(s):  
Manish Devgun ◽  
Sukhbir Lal

The High Mobility Group A1 (HMGA1) gene over expression has been widely observed in various types of cancers. The raw data for microarray data analysis was obtained from the dataset record GDS3525. The SOM and K-means of the Genesis led to the identification of two clusters (each consisting of 30 genes) bearing HMGA1 gene. This on further analysis resulted into identification of 14 similar genes by Easy M-A. The evolutionary similarity of HMGA1 and GORASP2 is clearly observed in the Phylogenetic Tree. Due to the absence of precise structures, the homology modeling was done by using EasyModeller and the resulting models of proteins HMGA1 and GORASP2 were validated by Ramachandran plot. These models were further put to loop optimization by Modloop and the output models were assessed by Ramachandran plot (Rampage) and through SAVS (Procheck). The molecular docking was done by using Autodock, this resulted in two ligands, DB11641 (Vinflunine) and DB12674 (Lurbinectedin), showing potential for the effective treatment of various types of cancers characterized by the over expression of HMGA1 and GORASP2.


2015 ◽  
Vol 37 (2) ◽  
pp. 19-23
Author(s):  
Mark J. Coldwell ◽  
Joanne L. Cowan

As the field of molecular biology developed, and the understanding of how inherited genetic material results in the expression of proteins was established, the initial hypothesis was that one gene gave rise to one protein1. As researchers delved deeper into the organization of the genetic code and advances in messenger RNA (mRNA) and protein sequencing were subsequently made, it has become abundantly clear that multiple mechanisms exist meaning that many mRNAs encode more than one version of a protein. Although alternative promoters and alternative splicing play a considerable role in the generation of protein isoforms, in this article we discuss how usage of alternative translation initiation codons in eukaryotes can also lead to an expanded proteome.


Sign in / Sign up

Export Citation Format

Share Document