scholarly journals Adult Plant Resistance in Maize to Northern Leaf Spot Is a Feature of Partial Loss-of-function Alleles ofHm1

2018 ◽  
Author(s):  
Sandeep R. Marla ◽  
Kevin Chu ◽  
Satya Chintamanani ◽  
Dilbag Multani ◽  
Antje Klempien ◽  
...  

ABSTRACTAdult plant resistance (APR) is an enigmatic phenomenon in which resistance genes are ineffective in protecting seedlings from disease but confer robust resistance at maturity. Maize has multiple cases in which genes confer APR to northern leaf spot, a lethal disease caused byCochliobolus carbonumrace 1 (CCR1). The first identified case of APR in maize is encoded by a hypomorphic allele,Hm1A, at thehm1locus. In contrast, wild type alleles ofhm1provide complete protection at all developmental stages and in every part of the maize plant.Hm1encodes an NADPH-dependent reductase, which inactivates HC-toxin, a key virulence effector of CCR1. Cloning and characterization ofHm1Aruled out differential transcription or translation for its APR phenotype and identified an amino acid substitution that reduced HC-toxin reductase (HCTR) activity. The possibility of a causal relationship between the weak nature ofHm1Aand its APR phenotype was confirmed by the generation of two new APR alleles ofHm1by mutagenesis. The HCTRs encoded by these new APR alleles had undergone relatively conservative missense changes that partially reduced their enzymatic activity similar to HM1A. No difference in accumulation of HCTR was observed between adult and juvenile plants, suggesting that the susceptibility of seedlings derives from a greater need for HCTR activity, not reduced accumulation of the gene product. Conditions and treatments that altered the photosynthetic output of the host had a dramatic effect on resistance imparted by the APR alleles, demonstrating a link between the energetic or metabolic status of the host and disease resistance affected by HC-toxin catabolism by the APR alleles of HCTR.AUTHOR SUMMARYAdult plant resistance (APR) is a phenomenon in which disease resistance genes are able to confer resistance at the adult stages of the plant but somehow fail to do so at the seedling stages. Despite the widespread occurrence of APR in various plant diseases, the mechanism underlying this trait remains obscure. It is not due to the differential transcription of these genes, and here we show that it is also not due to the differential translation or activity of the APR alleles of the maizehm1gene at different stages of development. Using a combination of molecular genetics, biochemistry and physiology, we present multiple lines of evidence that demonstrate that APR is a feature or symptom of weak forms of resistance. While the mature parts of the plant are metabolically robust enough to manifest resistance, seedling tissues are not, leaving them vulnerable to disease. Growth conditions that compromise the photosynthetic output of the plant further deteriorate the ability of the seedlings to protect themselves from pathogens.One sentence summaryCharacterization of adult plant resistance in the maize-CCR1 pathosystem reveals a causal link between weak resistance and APR.

2011 ◽  
Vol 123 (8) ◽  
pp. 1401-1411 ◽  
Author(s):  
Yuanfeng Hao ◽  
Zhenbang Chen ◽  
Yingying Wang ◽  
Dan Bland ◽  
James Buck ◽  
...  

Plant Disease ◽  
2019 ◽  
Vol 103 (9) ◽  
pp. 2359-2366 ◽  
Author(s):  
Bekele Hundie ◽  
Bedada Girma ◽  
Zerihun Tadesse ◽  
Erena Edae ◽  
Pablo Olivera ◽  
...  

In Ethiopia, breeding rust resistant wheat cultivars is a priority for wheat production. A stem rust epidemic during 2013 to 2014 on previously resistant cultivar Digalu highlighted the need to determine the effectiveness of wheat lines to multiple races of Puccinia graminis f. sp. tritici in Ethiopia. During 2014 and 2015, we evaluated a total of 97 bread wheat and 14 durum wheat genotypes against four P. graminis f. sp. tritici races at the seedling stage and in single-race field nurseries. Resistance genes were postulated using molecular marker assays. Bread wheat lines were resistant to race JRCQC, the race most virulent to durum wheat. Lines with stem rust resistance gene Sr24 possessed the most effective resistance to the four races. Only three lines with adult plant resistance possessed resistance effective to the four races comparable with cultivars with Sr24. Although responses of the wheat lines across races were positively correlated, wheat lines were identified that possessed adult plant resistance to race TTKSK but were relatively susceptible to race TKTTF. This study demonstrated the importance of testing wheat lines for response to multiple races of the stem rust pathogen to determine if lines possessed non-race-specific resistance. [Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .


Plant Disease ◽  
2005 ◽  
Vol 89 (5) ◽  
pp. 457-463 ◽  
Author(s):  
Z. L. Wang ◽  
L. H. Li ◽  
Z. H. He ◽  
X. Y. Duan ◽  
Y. L. Zhou ◽  
...  

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a widespread wheat disease in China. Identification of race-specific genes and adult plant resistance (APR) is of major importance in breeding for an efficient genetic control strategy. The objectives of this study were to (i) identify genes that confer seedling resistance to powdery mildew in Chinese bread wheat cultivars and introductions used by breeding programs in China and (ii) evaluate their APR in the field. The results showed that (i) 98 of 192 tested wheat cultivars and lines appear to have one or more resistance genes to powdery mildew; (ii) Pm8 and Pm4b are the most common resistance genes in Chinese wheat cultivars, whereas Pm8 and Pm3d are present most frequently in wheat cultivars introduced from CIMMYT, the United States, and European countries; (iii) genotypes carrying Pm1, Pm3e, Pm5, and Pm7 were susceptible, whereas those carrying Pm12, Pm16, and Pm20 were highly resistant to almost all isolates of B. graminis f. sp. tritici tested; and (iv) 22 genotypes expressed APR. Our data showed that the area under the disease progress curve, maximum disease severity on the penultimate leaf, and the disease index are good indicators of the degree of APR in the field. It may be a good choice to combine major resistance genes and APR genes in wheat breeding to obtain effective resistance to powdery mildew.


2013 ◽  
Vol 33 (2) ◽  
pp. 385-399 ◽  
Author(s):  
B. R. Basnet ◽  
R. P. Singh ◽  
A. M. H. Ibrahim ◽  
S. A. Herrera-Foessel ◽  
J. Huerta-Espino ◽  
...  

2015 ◽  
Vol 41 (10) ◽  
pp. 1472 ◽  
Author(s):  
Jin-Dong LIU ◽  
En-Nian YANG ◽  
Yong-Gui XIAO ◽  
Xin-Min CHEN ◽  
Ling WU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document