scholarly journals Bovine mammary gland development: new insights into the epithelial hierarchy

2018 ◽  
Author(s):  
Laurence Finot ◽  
Eric Chanat ◽  
Frederic Dessauge

AbstractMilk production is highly dependent on the extensive development of the mammary epithelium, which occurs during puberty. It is therefore essential to distinguish the epithelial cells committed to development during this key stage from the related epithelial hierarchy. Using cell phenotyping and sorting, we highlighted three sub-populations that we assume to be progenitors. The CD49fhighCD24neg cells expressing KRT14, vimentin and PROCR corresponded to basal progenitors whereas the CD49flowCD24neg cells expressing luminal KRT, progesterone and prolactin receptors, were of luminal lineage. The CD49flowCD24pos cells had features of a dual lineage, with luminal and basal characteristics (CD10, ALDH1 and KRT7 expression) and were considered to be early common (bipotent) progenitors. The mammary stem cell (MaSC) fraction was recovered in a fourth sub-population of CD49fhighCD24pos cells that expressed CD10/KRT14 and KRT7. The differential ALDH1 activities observed within the MaSC fraction allowed to discriminate between two states: quiescent MaSCs and lineage-restricted “activated” MaSCs. The in-depth characterization of these epithelial sub-populations provides new insights into the epithelial cell hierarchy in the bovine mammary gland and suggests a common developmental hierarchy in mammals.

2019 ◽  
Vol 20 (9) ◽  
pp. 2357 ◽  
Author(s):  
Eunmi Lee ◽  
Raziye Piranlioglu ◽  
Max S. Wicha ◽  
Hasan Korkaya

It is now widely believed that mammary epithelial cell plasticity, an important physiological process during the stages of mammary gland development, is exploited by the malignant cells for their successful disease progression. Normal mammary epithelial cells are heterogeneous and organized in hierarchical fashion, in which the mammary stem cells (MaSC) lie at the apex with regenerative capacity as well as plasticity. Despite the fact that the majority of studies supported the existence of multipotent MaSCs giving rise to both basal and luminal lineages, others proposed lineage restricted unipotent MaSCs. Consistent with the notion, the latest research has suggested that although normal MaSC subsets mainly stay in a quiescent state, they differ in their reconstituting ability, spatial localization, and molecular and epigenetic signatures in response to physiological stimuli within the respective microenvironment during the stages of mammary gland development. In this review, we will focus on current research on the biology of normal mammary stem cells with an emphasis on properties of cellular plasticity, self-renewal and quiescence, as well as the role of the microenvironment in regulating these processes. This will include a discussion of normal breast stem cell heterogeneity, stem cell markers, and lineage tracing studies.


2018 ◽  
Vol 65 ◽  
pp. 91-103 ◽  
Author(s):  
Ilanit Boyango ◽  
Uri Barash ◽  
Liat Fux ◽  
Inna Naroditsky ◽  
Neta Ilan ◽  
...  

2003 ◽  
Vol 177 (2) ◽  
pp. 305-317 ◽  
Author(s):  
D Schams ◽  
S Kohlenberg ◽  
W Amselgruber ◽  
B Berisha ◽  
MW Pfaffl ◽  
...  

It is now well established that oestrogen and progesterone are absolutely essential for mammary gland development. Lactation can be induced in non-pregnant animals by sex steroid hormone treatment. Most of the genomic actions of oestrogens are mediated by two oestrogen receptors (ER)-alpha and ERbeta, and for gestagens in ruminants by the progesterone receptor (PR). Our aim was the evaluation of mRNA expression and protein (localisation and Western blotting) during mammogenesis, lactogenesis, galactopoiesis (early, middle and late) and involution (8, 24, 28, 96-108 h and 14-28 days after the end of milking) in the bovine mammary gland (total no. 53). During these stages, the mRNA was assessed by means of real-time RT-PCR (LightCycler). The protein for ERalpha, ERbeta and PR was localised by immunohistochemistry and Western blotting. The mRNA expression results indicated the existence of ERalpha, ERbeta and PR in bovine mammary gland. Both ERalpha and PR are expressed in fg/ micro g total RNA range. The highest mRNA expression was found for ERalpha and PR in the tIssue of non-pregnant heifers, followed by a significant decrease to a lower level at the time of lactogenesis with low concentrations remaining during lactation and the first 4 weeks of involution. In contrast, the expression of ERbeta was about 1000-fold lower (ag/ micro g total RNA) and showed no clear difference during the stages examined, with a significant increase only 2-4 weeks after the end of milking. Immunolocalisation for ERalpha revealed a strong positive staining in nuclei of lactocytes in non-pregnant heifers, became undetectable during pregnancy, lactogenesis and lactation, and was again detectable 14-28 days after the end of milking. In contrast, PR was localised in the nuclei of epithelial cells in the mammary tIssue of non-pregnant heifers, in primigravid animals, and during late lactation and involution. During lactogenesis, peak and mid lactation, fewer nuclei of epithelial cells were positive, but increased staining of the cytoplasm of epithelial cells was obvious. ERalpha and ERbeta protein was found in all mammary gland stages examined by Western blotting. In contrast to mRNA expression, the protein signal for ERalpha was weaker in the tIssue of non-pregnant heifers and during involution (4 weeks). ERbeta protein showed a stronger signal (two isoform bands) in non-pregnant heifers and 4 weeks after the end of milking. This correlated with the mRNA expression data. Three isoforms of PR (A, B and C) were found by Western blotting in the tIssue of non-pregnant heifers, but only isoform B remained during the following stages (lactogenesis, galactopoiesis and involution). In conclusion, the mRNA expression and protein data for ER and PR showed clear regulatory changes, suggesting involvement of these receptors in bovine mammary gland development and involution.


2013 ◽  
Vol 228 (7) ◽  
pp. 1391-1396 ◽  
Author(s):  
Suhaib K. Abdeen ◽  
Zaidoun Salah ◽  
Saleh Khawaled ◽  
Rami I. Aqeilan

Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1351 ◽  
Author(s):  
Nora Jung ◽  
Veronique Maguer-Satta ◽  
Boris Guyot

Estrogens are major regulators of the mammary gland development, notably during puberty, via estrogen receptor (ER) activation, leading to the proliferation and differentiation of mammary cells. In addition to estrogens, the bone morphogenetic proteins (BMPs) family is involved in breast stem cell/progenitor commitment. However, these two pathways that synergistically contribute to the biology of the normal mammary gland have also been described to initiate and/or promote breast cancer development. In addition to intrinsic events, lifestyle habits and exposure to environmental cues are key risk factors for cancer in general, and especially for breast cancer. In the latter case, bisphenol A (BPA), an estrogen-mimetic compound, is a critical pollutant both in terms of the quantities released in our environment and of its known and speculated effects on mammary gland biology. In this review, we summarize the current knowledge on the actions of BMPs and estrogens in both normal mammary gland development and breast cancer initiation, dissemination, and resistance to treatment, focusing on the dysregulations of these processes by BPA but also by other bisphenols, including BPS and BPF, initially considered as safer alternatives to BPA.


2005 ◽  
Vol 185 (3) ◽  
pp. 593-603 ◽  
Author(s):  
E E Connor ◽  
D L Wood ◽  
T S Sonstegard ◽  
A F da Mota ◽  
G L Bennett ◽  
...  

Steroid receptors are key transcriptional regulators of mammary growth, development and lactation. Expression of estrogen receptors alpha (ERα) and beta (ERβ), progesterone receptor (PR), and estrogen-related receptor alpha-1 (ERRβ) have been evaluated in bovine mammary gland. The ERRα is an orphan receptor that, in other species and tissues, appears to function in the regulation of estrogen-response genes including lactoferrin and medium chain acyl-CoA dehydrogenase and in mitochondrial biogenesis. Expression of ERα, ERβ, PR and ERRα was characterized in mammary tissue obtained from multiple stages of bovine mammary gland development using quantitative real-time RT-PCR. Expression was evaluated in prepubertal heifers, primigravid cows, lactating non-pregnant cows, lactating pregnant cows and non-lactating pregnant cows (n=4 to 9 animals/stage). In addition, ERα, ERβ, PR and ERRα were mapped to chromosomes 9, 10, 15 and 29 respectively, by linkage and radiation hybrid mapping. Results indicated that expression of ERα, PR and ERRα was largely coordinately regulated and they were present in significant quantity during all physiological stages evaluated. In contrast, ERβ transcripts were present at a very low concentration during all stages. Furthermore, no ERβ protein could be detected in bovine mammary tissue by immunohistochemistry. The ERα and PR proteins were detected during all physiological states, including lactation. Our results demonstrate the presence of ERα, PR and ERRα during all physiological stages, and suggest a functional role for ERRα and a relative lack of a role for ERβ in bovine mammary gland development and lactation.


Sign in / Sign up

Export Citation Format

Share Document