scholarly journals Effects of coil orientation on Motor Evoked Potentials from Orbicularis Oris and First Dorsal Interosseous

2018 ◽  
Author(s):  
Patti Adank ◽  
Dan Kennedy-Higgins ◽  
Gwijde Maegherman ◽  
Ricci Hannah ◽  
Helen Nuttall

AbstractObjectiveThis study aimed to characterise effects of coil orientation on the size of Motor Evoked Potentials (MEPs) from both sides of Orbicularis Oris (OO) and compare these effects with those reported for First Dorsal Interosseous (FDI), following stimulation to left lip and left hand Primary Motor Cortex.MethodsUsing a 70 mm figure-of-eight coil, we collected MEPs from eight different orientations while recording from contralateral and ipsilateral OO and FDI using a monophasic pulse.ResultsMEPs from OO were evoked consistently for six out of eight orientations for contralateral and ipsilateral sites. When latency and silent periods were taken into account, contralateral orientations 0°, 45°, 90°, and 315° were found to best elicit OO MEPs with a likely cortical origin. As expected, the largest FDI MEPs were recorded with an orientation of 45°, invoking a posterior-anterior (PA) current flow, from the contralateral location.ConclusionOrientations traditionally used for FDI were also found suitable for eliciting OO MEPs. Individuals vary more in their optimal coil orientation for eliciting MEPs from OO than for FDI. It is recommended that researchers iteratively probe several orientations when eliciting MEPs from OO. Care must be taken however because several orientations likely induced direct activation of facial muscles.

2004 ◽  
Vol 100 (1) ◽  
pp. 155-160 ◽  
Author(s):  
Katsushige Watanabe ◽  
Takashi Watanabe ◽  
Akio Takahashi ◽  
Nobuhito Saito ◽  
Masafumi Hirato ◽  
...  

✓ The feasibility of high-frequency transcranial electrical stimulation (TES) through screw electrodes placed in the skull was investigated for use in intraoperative monitoring of the motor pathways in patients who are in a state of general anesthesia during cerebral and spinal operations. Motor evoked potentials (MEPs) were elicited by TES with a train of five square-wave pulses (duration 400 µsec, intensity ≤ 200 mA, frequency 500 Hz) delivered through metal screw electrodes placed in the outer table of the skull over the primary motor cortex in 42 patients. Myogenic MEPs to anodal stimulation were recorded from the abductor pollicis brevis (APB) and tibialis anterior (TA) muscles. The mean threshold stimulation intensity was 48 ± 17 mA for the APB muscles, and 112 ± 35 mA for the TA muscles. The electrodes were firmly fixed at the site and were not dislodged by surgical manipulation throughout the operation. No adverse reactions attributable to the TES were observed. Passing current through the screw electrodes stimulates the motor cortex more effectively than conventional methods of TES. The method is safe and inexpensive, and it is convenient for intraoperative monitoring of motor pathways.


2012 ◽  
Vol 107 (11) ◽  
pp. 3086-3094 ◽  
Author(s):  
Takuya Morishita ◽  
Kazumasa Uehara ◽  
Kozo Funase

The effect of performance of a sensorimotor task on the interhemispheric inhibition (IHI) induced from the active primary motor cortex (M1) to the resting M1 was examined in 10 right-handed subjects. Transcranial magnetic stimulation (TMS) was performed to produce motor evoked potentials (MEP) in the resting right (Rt)-first dorsal interosseous (FDI). For the paired-TMS paradigm, a conditioning stimulus (CS) was delivered to the Rt-M1, and its intensity was adjusted from 0.6 to 1.4 times the resting motor threshold of the MEP in the left (Lt)-FDI in 0.2 steps. The test stimulus was delivered to the Lt-M1, and its intensity was adjusted to evoke similar MEP amplitudes in the Rt-FDI among the task conditions. The interstimulus interval was fixed at 10 ms. As a sensorimotor task, a fine-motor manipulation (FM) task (using chopsticks to pick up, transport, and release glass balls) was adopted. In addition, an isometric abduction (IA) task was also performed as a control task. These tasks were carried out with the left hand. The IHI from the active to the resting M1 observed during the FM task was markedly increased compared with that induced during the IA task, and this effect was not dependent on the MEP amplitude evoked in the active Lt-FDI by the CS. The present findings suggest that the increased IHI from the active to the resting M1 observed during the FM task was linked to reductions in the activity of the ipsilateral intracortical inhibitory circuit, as we reported previously.


2022 ◽  
Author(s):  
Nelly Seusing ◽  
Sebastian Strauss ◽  
Robert Fleischmann ◽  
Christina Nafz ◽  
Sergiu Groppa ◽  
...  

Abstract ObjectiveThe role of ipsilateral descending motor pathways in voluntary movement of humans is still a matter of debate. Few studies have examined the task dependent modulation of ipsilateral motor evoked potentials (iMEPs). Here, we determined the location of upper limb biceps brachii (BB) representation within the ipsilateral primary motor cortex. MethodsMR-navigated transcranial magnetic stimulation mapping of the dominant hemisphere was undertaken with twenty healthy participants who made tonic unilateral, bilateral homologous or bilateral antagonistic elbow flexion-extension voluntary contractions. Map center of gravity (CoG) and area for each BB were obtained. ResultsThe map CoG of the ipsilateral BB was located more anterior-laterally than those of the contralateral BB within the primary motor cortex. However different tasks had no effect on either the iMEP CoG location or the size. ConclusionOur data suggests that ipsilateral and contralateral MEP might originate in distinct adjacent neural populations in the primary motor cortex, independent of task dependence.


2013 ◽  
Vol 35 (5) ◽  
pp. 1969-1980 ◽  
Author(s):  
Florinda Ferreri ◽  
Fabrizio Vecchio ◽  
David Ponzo ◽  
Patrizio Pasqualetti ◽  
Paolo Maria Rossini

2018 ◽  
Vol 119 (3) ◽  
pp. 877-886 ◽  
Author(s):  
John Cirillo ◽  
Matthew J. Cowie ◽  
Hayley J. MacDonald ◽  
Winston D. Byblow

We routinely cancel preplanned movements that are no longer required. If stopping is forewarned, proactive processes are engaged to selectively decrease motor cortex excitability. However, without advance information there is a nonselective reduction in motor cortical excitability. In this study we examined modulation of human primary motor cortex inhibitory networks during response inhibition tasks with informative and uninformative cues using paired-pulse transcranial magnetic stimulation. Long- (LICI) and short-interval intracortical inhibition (SICI), indicative of GABAB- and GABAA-receptor mediated inhibition, respectively, were examined from motor evoked potentials obtained in task-relevant and task-irrelevant hand muscles when response inhibition was preceded by informative and uninformative cues. When the participants (10 men and 8 women) were cued to stop only a subcomponent of the bimanual response, the remaining response was delayed, and the extent of delay was greatest in the more reactive context, when cues were uninformative. For LICI, inhibition was reduced in both muscles during all types of response inhibition trials compared with the pre-task resting baseline. When cues were uninformative and left-hand responses were suddenly canceled, task-relevant LICI positively correlated with response times of the responding right hand. In trials where left-hand responding was highly probable or known (informative cues), task-relevant SICI was reduced compared with that when cued to rest, revealing a motor set indicative of responding. These novel findings indicate that the GABAB-receptor-mediated pathway may set a default inhibitory tone according to task context, whereas the GABAA-receptor-mediated pathways are recruited proactively with response certainty. NEW & NOTEWORTHY We examined how informative and uninformative cues that trigger both proactive and reactive processes modulate GABAergic inhibitory networks within human primary motor cortex. We show that GABAB inhibition was released during the task regardless of cue type, whereas GABAA inhibition was reduced when responding was highly probable or known compared with rest. GABAB-receptor-mediated inhibition may set a default inhibitory tone, whereas GABAA circuits may be modulated proactively according to response certainty.


2021 ◽  
Vol 15 ◽  
Author(s):  
Daniela Roos ◽  
Lea Biermann ◽  
Tomasz A. Jarczok ◽  
Stephan Bender

Transcranial magnetic stimulation (TMS) with simultaneous electroencephalography applied to the primary motor cortex provides two parameters for cortical excitability: motor evoked potentials (MEPs) and TMS-evoked potentials (TEPs). This study aimed to evaluate the effects of systematic coil shifts on both the TEP N100 component and MEPs in addition to the relationship between both parameters. In 12 healthy adults, the center of a standardized grid was fixed above the hot spot of the target muscle of the left primary motor cortex. Twelve additional positions were arranged in a quadratic grid with positions between 5 and 10 mm from the hot spot. At each of the 13 positions, TMS single pulses were applied. The topographical maximum of the resulting N100 was located ipsilateral and slightly posterior to the stimulation site. A source analysis revealed an equivalent dipole localized more deeply than standard motor cortex coordinates that could not be explained by a single seeded primary motor cortex dipole. The N100 topography might not only reflect primary motor cortex activation, but also sum activation of the surrounding cortex. N100 amplitude and latency decreased significantly during stimulation anterior-medial to the hot spot although MEP amplitudes were smaller at all other stimulation sites. Therefore, N100 amplitudes might be suitable for detecting differences in local cortical excitability. The N100 topography, with its maximum located posterior to the stimulation site, possibly depends on both anatomical characteristics of the stimulated cortex and differences in local excitability of surrounding cortical areas. The less excitable anterior cortex might contribute to a more posterior maximum. There was no correlation between N100 and MEP amplitudes, but a single-trial analysis revealed a trend toward larger N100 amplitudes in trials with larger MEPs. Thus, functionally efficient cortical excitation might increase the probability of higher N100 amplitudes, but TEPs are also generated in the absence of MEPs.


Neurosurgery ◽  
2015 ◽  
Vol 77 (3) ◽  
pp. 394-405 ◽  
Author(s):  
Laura Säisänen ◽  
Petro Julkunen ◽  
Samuli Kemppainen ◽  
Nils Danner ◽  
Arto Immonen ◽  
...  

Abstract BACKGROUND: Navigated transcranial magnetic stimulation (nTMS) has become established as an accurate noninvasive technique for mapping the functional motor cortex for the representation areas of upper and lower limb muscles but not yet for facial musculature. OBJECTIVE: To characterize the applicability and clinical impact of using nTMS to map cortical motor areas of facial muscles in healthy volunteers and neurosurgical tumor patients. METHODS: Eight healthy volunteers and 12 patients with tumor were studied. The motor threshold (MT) was determined for the abductor pollicis brevis and mentalis muscles. The lateral part of the motor cortex was mapped with suprathreshold stimulation intensity, and motor evoked potentials were recorded from several facial muscles. The patient protocol was modified according to the clinical indication. RESULTS: In all healthy subjects, motor evoked potentials were elicited in the mentalis (mean latency, 13.4 milliseconds) and orbicularis oris (mean latency, 12.6 milliseconds) muscles. At 110% of MT of the mentalis, the motor evoked potentials of facial muscles were elicited mainly in the precentral gyrus but also from one gyrus anterior and posterior to it. The cortical areas applicable for mapping were limited by an artifact attributable to direct peripheral nerve stimulation. The mapping protocol was successful in 10 of 12 tumor patients at locating the representation area of the lower facial muscles. The MT of the facial muscles was significantly higher than that of the abductor pollicis brevis. CONCLUSION: nTMS is an applicable and clinically beneficial noninvasive method to preoperatively map the cortical representation areas of the facial muscles in the lower part of the face. Instead of using the MT of the abductor pollicis brevis, the stimulus intensity during mapping should be proportioned to the MT of a facial muscle.


2011 ◽  
Vol 23 (12) ◽  
pp. 3939-3948 ◽  
Author(s):  
Liuba Papeo ◽  
Corrado Corradi-Dell'Acqua ◽  
Raffaella Ida Rumiati

Embodied theories hold that understanding what another person is doing requires the observer to map that action directly onto his or her own motor representation and simulate it internally. The human motor system may, thus, be endowed with a “mirror matching” device through which the same motor representation is activated, when the subject is either the performer or the observer of another's action (“self-other shared representation”). It is suggested that understanding action verbs relies upon the same mechanism; this implies that motor responses to these words are automatic and independent of the subject of the verb. In the current study, participants were requested to read silently and decide on the syntactic subject of action and nonaction verbs, presented in first (1P) or third (3P) person, while TMS was applied to the left hand primary motor cortex (M1). TMS-induced motor-evoked potentials were recorded from hand muscles as a measure of cortico-spinal excitability. Motor-evoked potentials increased for 1P, but not for 3P, action verbs or 1P and 3P nonaction verbs. We provide novel demonstration that the motor simulation is triggered only when the conceptual representation of a word integrates the action with the self as the agent of that action. This questions the core principle of “mirror matching” and opens to alternative interpretations of the relationship between conceptual and sensorimotor processes.


Sign in / Sign up

Export Citation Format

Share Document