scholarly journals GENOME REPORT: High-quality genome assemblies of 15 Drosophila species generated using Nanopore sequencing

2018 ◽  
Author(s):  
Danny E. Miller ◽  
Cynthia Staber ◽  
Julia Zeitlinger ◽  
R. Scott Hawley

ABSTRACTThe Drosophila genus is a unique group containing a wide range of species that occupy diverse ecosystems. In addition to the most widely studied species, Drosophila melanogaster, many other members in this genus also possess a well-developed set of genetic tools. Indeed, high-quality genomes exist for several species within the genus, facilitating studies of the function and evolution of cis-regulatory regions and proteins by allowing comparisons across at least 50 million years of evolution. Yet, the available genomes still fail to capture much of the substantial genetic diversity within the Drosophila genus. We have therefore tested protocols to rapidly and inexpensively sequence and assemble the genome from any Drosophila species using single-molecule sequencing technology from Oxford Nanopore. Here, we use this technology to present high-quality genome assemblies of 15 Drosophila species: 10 of the 12 originally sequenced Drosophila species (ananassae, erecta, mojavensis, persimilis, pseudoobscura, sechellia, simulans, virilis, willistoni, and yakuba), four additional species that had previously reported assemblies (biarmipes, bipectinata, eugracilis, and mauritiana), and one novel assembly (triauraria). Genomes were generated from an average of 29x depth-of-coverage data that after assembly resulted in an average contig N50 of 4.4 Mb. Subsequent alignment of contigs from the published reference genomes demonstrates that our assemblies could be used to close over 60% of the gaps present in the currently published reference genomes. Importantly, the materials and reagents cost for each genome was approximately $1,000 (USD). This study demonstrates the power and cost-effectiveness of long-read sequencing for genome assembly in Drosophila and provides a framework for the affordable sequencing and assembly of additional Drosophila genomes.

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Jean-Marc Aury ◽  
Benjamin Istace

Abstract Single-molecule sequencing technologies have recently been commercialized by Pacific Biosciences and Oxford Nanopore with the promise of sequencing long DNA fragments (kilobases to megabases order) and then, using efficient algorithms, provide high quality assemblies in terms of contiguity and completeness of repetitive regions. However, the error rate of long-read technologies is higher than that of short-read technologies. This has a direct consequence on the base quality of genome assemblies, particularly in coding regions where sequencing errors can disrupt the coding frame of genes. In the case of diploid genomes, the consensus of a given gene can be a mixture between the two haplotypes and can lead to premature stop codons. Several methods have been developed to polish genome assemblies using short reads and generally, they inspect the nucleotide one by one, and provide a correction for each nucleotide of the input assembly. As a result, these algorithms are not able to properly process diploid genomes and they typically switch from one haplotype to another. Herein we proposed Hapo-G (Haplotype-Aware Polishing Of Genomes), a new algorithm capable of incorporating phasing information from high-quality reads (short or long-reads) to polish genome assemblies and in particular assemblies of diploid and heterozygous genomes.


2020 ◽  
Author(s):  
Bernard Y Kim ◽  
Jeremy Wang ◽  
Danny E. Miller ◽  
Olga Barmina ◽  
Emily K. Delaney ◽  
...  

Over 100 years of studies in Drosophila melanogaster and related species in the genus Drosophila have facilitated key discoveries in genetics, genomics, and evolution. While high-quality genome assemblies exist for several species in this group, they only encompass a small fraction of the genus. Recent advances in long read sequencing allow high quality genome assemblies for tens or even hundreds of species to be generated. Here, we utilize Oxford Nanopore sequencing to build an open community resource of high-quality assemblies for 101 lines of 95 drosophilid species encompassing 14 species groups and 35 sub-groups with an average contig N50 of 10.5 Mb and greater than 97% BUSCO completeness in 97/101 assemblies. These assemblies, along with detailed wet lab protocol and assembly pipelines, are released as a public resource and will serve as a starting point for addressing broad questions of genetics, ecology, and evolution within this key group.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Bernard Y Kim ◽  
Jeremy Wang ◽  
Danny E Miller ◽  
Olga Barmina ◽  
Emily Kay Delaney ◽  
...  

Over 100 years of studies in Drosophila melanogaster and related species in the genus Drosophila have facilitated key discoveries in genetics, genomics, and evolution. While high-quality genome assemblies exist for several species in this group, they only encompass a small fraction of the genus. Recent advances in long-read sequencing allow high-quality genome assemblies for tens or even hundreds of species to be efficiently generated. Here, we utilize Oxford Nanopore sequencing to build an open community resource of genome assemblies for 101 lines of 93 drosophilid species encompassing 14 species groups and 35 sub-groups. The genomes are highly contiguous and complete, with an average contig N50 of 10.5 Mb and greater than 97% BUSCO completeness in 97/101 assemblies. We show that Nanopore-based assemblies are highly accurate in coding regions, particularly with respect to coding insertions and deletions. These assemblies, along with a detailed laboratory protocol and assembly pipelines, are released as a public resource and will serve as a starting point for addressing broad questions of genetics, ecology, and evolution at the scale of hundreds of species.


GigaScience ◽  
2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Sarah B Kingan ◽  
Julie Urban ◽  
Christine C Lambert ◽  
Primo Baybayan ◽  
Anna K Childers ◽  
...  

ABSTRACT Background A high-quality reference genome is an essential tool for applied and basic research on arthropods. Long-read sequencing technologies may be used to generate more complete and contiguous genome assemblies than alternate technologies; however, long-read methods have historically had greater input DNA requirements and higher costs than next-generation sequencing, which are barriers to their use on many samples. Here, we present a 2.3 Gb de novo genome assembly of a field-collected adult female spotted lanternfly (Lycorma delicatula) using a single Pacific Biosciences SMRT Cell. The spotted lanternfly is an invasive species recently discovered in the northeastern United States that threatens to damage economically important crop plants in the region. Results The DNA from 1 individual was used to make 1 standard, size-selected library with an average DNA fragment size of ∼20 kb. The library was run on 1 Sequel II SMRT Cell 8M, generating a total of 132 Gb of long-read sequences, of which 82 Gb were from unique library molecules, representing ∼36× coverage of the genome. The assembly had high contiguity (contig N50 length = 1.5 Mb), completeness, and sequence level accuracy as estimated by conserved gene set analysis (96.8% of conserved genes both complete and without frame shift errors). Furthermore, it was possible to segregate more than half of the diploid genome into the 2 separate haplotypes. The assembly also recovered 2 microbial symbiont genomes known to be associated with L. delicatula, each microbial genome being assembled into a single contig. Conclusions We demonstrate that field-collected arthropods can be used for the rapid generation of high-quality genome assemblies, an attractive approach for projects on emerging invasive species, disease vectors, or conservation efforts of endangered species.


Plant Disease ◽  
2020 ◽  
Vol 104 (4) ◽  
pp. 1011-1012
Author(s):  
Stephen P. Cohen ◽  
Emily K. Luna ◽  
Jillian M. Lang ◽  
Janet Ziegle ◽  
Christine Chang ◽  
...  

The bacterial plant pathogen Xanthomonas hyacinthi is the causal agent of yellow disease of Hyacinthus and other ornamental plant genera. There is no available complete genome for X. hyacinthi, limiting basic research for this pathogen. Here, we release a high-quality complete genome sequence for the X. hyacinthi type strain, CFBP 1156. Single-molecule real-time (SMRT) sequencing with a mean coverage of 306× revealed two contigs of 4,918,645 and 44,381 bp in size. This was the first characterized plant-disease-causing species of Xanthomonas and this genome provides a resource to better understand the biology of yellow disease of hyacinth.


Nature ◽  
2021 ◽  
Vol 592 (7856) ◽  
pp. 737-746 ◽  
Author(s):  
Arang Rhie ◽  
Shane A. McCarthy ◽  
Olivier Fedrigo ◽  
Joana Damas ◽  
Giulio Formenti ◽  
...  

AbstractHigh-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species1–4. To address this issue, the international Genome 10K (G10K) consortium5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences.


2020 ◽  
Author(s):  
Jean-Marc Aury ◽  
Benjamin Istace

Single-molecule sequencing technologies have recently been commercialized by Pacific Biosciences and Oxford Nanopore with the promise of sequencing long DNA fragments (kilobases to megabases order) and then, using efficient algorithms, provide high quality assemblies in terms of contiguity and completeness of repetitive regions. However, the error rate of long-read technologies is higher than that of short-read technologies. This has a direct consequence on the base quality of genome assemblies, particularly in coding regions where sequencing errors can disrupt the coding frame of genes. In the case of diploid genomes, the consensus of a given gene can be a mixture between the two haplotypes and can lead to premature stop codons. Several methods have been developed to polish genome assemblies using short reads and generally, they inspect the nucleotide one by one, and provide a correction for each nucleotide of the input assembly. As a result, these algorithms are not able to properly process diploid genomes and they typically switch from one haplotype to another. Herein we proposed Hapo-G (Haplotype-Aware Polishing Of Genomes), a new algorithm capable of incorporating phasing information from short reads to polish genome assemblies and in particular assemblies of diploid and heterozygous genomes.


Author(s):  
Arang Rhie ◽  
Shane A. McCarthy ◽  
Olivier Fedrigo ◽  
Joana Damas ◽  
Giulio Formenti ◽  
...  

AbstractHigh-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are only available for a few non-microbial species1–4. To address this issue, the international Genome 10K (G10K) consortium5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling the most accurate and complete reference genomes to date. Here we summarize these developments, introduce a set of quality standards, and present lessons learned from sequencing and assembling 16 species representing major vertebrate lineages (mammals, birds, reptiles, amphibians, teleost fishes and cartilaginous fishes). We confirm that long-read sequencing technologies are essential for maximizing genome quality and that unresolved complex repeats and haplotype heterozygosity are major sources of error in assemblies. Our new assemblies identify and correct substantial errors in some of the best historical reference genomes. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an effort to generate high-quality, complete reference genomes for all ~70,000 extant vertebrate species and help enable a new era of discovery across the life sciences.


2021 ◽  
Author(s):  
Ryan R Wick ◽  
Louise M Judd ◽  
Louise T Cerdeira ◽  
Jane Hawkey ◽  
Guillaume Meric ◽  
...  

Assembly of bacterial genomes from long-read data (generated by Oxford Nanopore or Pacific Biosciences platforms) can often be complete: a single contig for each chromosome or plasmid in the genome. However, even complete bacterial genome assemblies constructed solely from long reads still contain a variety of errors, and different assemblies of the same genome often contain different errors. Here, we present Trycycler, a tool which produces a consensus assembly from multiple input assemblies of the same genome. Benchmarking using both simulated and real sequencing reads showed that Trycycler consensus assemblies contained fewer errors than any of those constructed with a single long-read assembler. Post-assembly polishing with Medaka and Pilon further reduced errors and yielded the most accurate genome assemblies in our study. As Trycycler can require human judgement and manual intervention, its output is not deterministic, and different users can produce different Trycycler assemblies from the same input data. However, we demonstrated that multiple users with minimal training converge on similar assemblies that are consistently more accurate than those produced by automated assembly tools. We therefore recommend Trycycler+Medaka+Pilon as an ideal approach for generating high-quality bacterial reference genomes.


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 732
Author(s):  
Benjamin Istace ◽  
Caroline Belser ◽  
Cyril Falentin ◽  
Karine Labadie ◽  
Franz Boideau ◽  
...  

With the rise of long-read sequencers and long-range technologies, delivering high-quality plant genome assemblies is no longer reserved to large consortia. Not only sequencing techniques, but also computer algorithms have reached a point where the reconstruction of assemblies at the chromosome scale is now feasible at the laboratory scale. Current technologies, in particular long-range technologies, are numerous, and selecting the most promising one for the genome of interest is crucial to obtain optimal results. In this study, we resequenced the genome of the yellow sarson, Brassica rapa cv. Z1, using the Oxford Nanopore PromethION sequencer and assembled the sequenced data using current assemblers. To reconstruct complete chromosomes, we used and compared three long-range scaffolding techniques, optical mapping, Omni-C, and Pore-C sequencing libraries, commercialized by Bionano Genomics, Dovetail Genomics, and Oxford Nanopore Technologies, respectively, or a combination of the three, in order to evaluate the capability of each technology.


Sign in / Sign up

Export Citation Format

Share Document