scholarly journals Model testing for distinctive functional connectivity gradients with resting-state fMRI data

2018 ◽  
Author(s):  
Jonathan F. O’Rawe ◽  
Jaime S. Ide ◽  
Hoi-Chung Leung

AbstractIn accordance with the concept of topographic organization of neuroanatomical structures, there is an increased interest in estimating and delineating continuous changes in the functional connectivity patterns across neighboring voxels within a region of interest using resting-state fMRI data. Fundamental to this functional connectivity gradient analysis is the assumption that the functional organization is stable and uniform across the region of interest. To evaluate this assumption, we developed a model testing procedure to arbitrate between overlapping, shifted, or different topographic connectivity gradients across subdivisions of a structure. We tested the procedure using the striatum, a subcortical structure consisting of the caudate nucleus and putamen, in which an extensive literature, primarily from rodents and non-human primates, suggest to have a shared topographic organization of a single diagonal gradient. We found, across multiple resting state fMRI data samples of different spatial resolutions in humans, and one macaque resting state fMRI data sample, that the models with different functional connectivity gradients across the caudate and putamen was the preferred model. The model selection procedure was validated in control conditions of checkerboard subdivisions, demonstrating the expected overlapping gradient. More specifically, while we replicated the diagonal organization of the functional connectivity gradients in both the caudate and putamen, our analysis also revealed a medial-lateral organization within the caudate. Not surprisingly, performing the same analysis assuming a unitary gradient obfuscates the medial-lateral organization of the caudate, producing only a diagonal gradient. These findings demonstrate the importance of testing basic assumptions and evaluating interpretations across species. The significance of differential topographic gradients across the putamen and caudate and the medial-lateral gradient of the caudate in humans should be tested in future studies.

NeuroImage ◽  
2019 ◽  
Vol 185 ◽  
pp. 102-110 ◽  
Author(s):  
Jonathan F. O'Rawe ◽  
Jaime S. Ide ◽  
Hoi-Chung Leung

2020 ◽  
Author(s):  
Arun S. Mahadevan ◽  
Ursula A. Tooley ◽  
Maxwell A. Bertolero ◽  
Allyson P. Mackey ◽  
Danielle S. Bassett

AbstractFunctional connectivity (FC) networks are typically inferred from resting-state fMRI data using the Pearson correlation between BOLD time series from pairs of brain regions. However, alternative methods of estimating functional connectivity have not been systematically tested for their sensitivity or robustness to head motion artifact. Here, we evaluate the sensitivity of six different functional connectivity measures to motion artifact using resting-state data from the Human Connectome Project. We report that FC estimated using full correlation has a relatively high residual distance-dependent relationship with motion compared to partial correlation, coherence and information theory-based measures, even after implementing rigorous methods for motion artifact mitigation. This disadvantage of full correlation, however, may be offset by higher test-retest reliability and system identifiability. FC estimated by partial correlation offers the best of both worlds, with low sensitivity to motion artifact and intermediate system identifiability, with the caveat of low test-retest reliability. We highlight spatial differences in the sub-networks affected by motion with different FC metrics. Further, we report that intra-network edges in the default mode and retrosplenial temporal sub-networks are highly correlated with motion in all FC methods. Our findings indicate that the method of estimating functional connectivity is an important consideration in resting-state fMRI studies and must be chosen carefully based on the parameters of the study.


2021 ◽  
Author(s):  
Luoyao Pang ◽  
Huidi Li ◽  
Quanying Liu ◽  
Yue-jia Luo ◽  
Dean Mobbs ◽  
...  

Motivated dishonesty is a typical social behavior varying from person to person. Resting-state fMRI (rsfMRI) is capable of identifying unique patterns from functional connectivity (FC) between brain networks. To identify the relevant neural patterns and build an interpretable model to predict dishonesty, we scanned 8-min rsfMRI before an information-passing task. In the task, we employed monetary rewards to induce dishonesty. We applied both connectome-based predictive modeling (CPM) and region-of-interest (ROI) analysis to examine the association between FC and dishonesty. CPM indicated that the stronger FC between fronto-parietal and default mode networks can predict a higher dishonesty rate. The ROIs were set in the regions involving four cognitive processes (self-reference, cognitive control, reward valuation, and moral regulation). The ROI analyses showed that a stronger FC between these regions and the prefrontal cortex can predict a higher dishonesty rate. Our study offers an integrated model to predict dishonesty with rsfMRI, and the results suggest that the frequent motivated dishonest behavior may require a higher engagement of social brain regions.


2020 ◽  
Vol 124 (6) ◽  
pp. 1900-1913
Author(s):  
Justine C. Cléry ◽  
Yuki Hori ◽  
David J. Schaeffer ◽  
Joseph S. Gati ◽  
J. Andrew Pruszynski ◽  
...  

We used somatosensory stimulation combined with functional MRI (fMRI) in awake marmosets to reveal the topographic body representation in areas S1, S2, thalamus, and putamen. We showed the existence of a body representation organization within the thalamus and the cingulate cortex by computing functional connectivity maps from seeds defined in S1/S2 using resting-state fMRI data. This noninvasive approach will be essential for chronic studies by guiding invasive recording and manipulation techniques.


2013 ◽  
Vol 35 (4) ◽  
pp. 1261-1272 ◽  
Author(s):  
Elseline Hoekzema ◽  
Susana Carmona ◽  
J. Antoni Ramos-Quiroga ◽  
Vanesa Richarte Fernández ◽  
Rosa Bosch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document