scholarly journals Calcium-Calmodulin Gating of Connexin43 Gap Junctions in the Absence of the pH Gating Domain

2018 ◽  
Author(s):  
Siyu Wei ◽  
Christian Cassara ◽  
Xianming Lin ◽  
Richard D Veenstra

AbstractIntracellular protons and calcium ions are two major chemical factors that regulate connexin43 (Cx43) gap junction channels and the synergism or antagonism between pH and Ca2+ has been questioned for decades. In this study, we assessed whether the calcium gating mechanism occurs independently of the pH gating mechanism by utilizing the Cx43-M257 (Cx43K258stop) mutant, a carboxyl-terminal (CT) truncated version of Cx43 lacking the pH gating domain. Dual whole cell patch clamp experiments were performed on Neuroblastoma-2a (N2a) cells or neonatal mouse ventricular myocytes (NMVMs) expressing either full length Cx43 or Cx43-M257 proteins. Addition of 1 μM ionomycin to normal calcium saline reduced Cx43 or Cx43-M257 macroscopic gap junction conductance (gj) to zero within 15 min of perfusion, while this response was prevented by omitting 1.8 mM CaCl2 from the external solution or adding 100 nM calmodulin (CaM) inhibitory peptide to the internal pipette solution. The ability of connexin calmodulin binding domain (Cx CaMBD) mimetic peptides and the Gap19 peptide to inhibit the Ca2+/CaM gating response of Cx43 gap junctions was also examined. Internal addition of a Cx50 cytoplasmic loop CaMBD peptide (200 nM) prevented the Ca2+/ionomycin-induced decrease in Cx43 gj, while 100 μM Gap19 peptide had no effect. Lastly, the transjunctional voltage (Vj) gating properties of NMVM Cx43-M257 gap junctions were investigated. We confirmed that the fast kinetic inactivation component was absent in Cx43-M257 gap junctions, but also observed that the previously reported facilitated recovery of gj from inactivating potentials was abolished by CT truncation of Cx43. We conclude that CT pH gating domain of Cx43 contributes to the Vj-dependent fast inactivation and facilitated recovery of Cx43 gap junctions, but the Ca2+/CaM-dependent gating mechanism remains intact. Sequence-specific Cx CaMBD mimetic peptides act by binding Ca2+/CaM non-specifically and the Cx43 mimetic Gap19 peptide has no effect on this chemical gating mechanism.


2019 ◽  
Vol 476 (7) ◽  
pp. 1137-1148 ◽  
Author(s):  
Siyu Wei ◽  
Christian Cassara ◽  
Xianming Lin ◽  
Richard D. Veenstra

Abstract Intracellular protons and calcium ions are two major chemical factors that regulate connexin43 (Cx43) gap junction communication and the synergism or antagonism between pH and Ca2+ has been questioned for decades. To assess the ability of Ca2+ ions to modulate Cx43 junctional conductance (gj) in the absence of pH-sensitivity, patch clamp experiments were performed on Neuroblastoma-2a (N2a) cells or neonatal mouse ventricular myocytes (NMVMs) expressing either full-length Cx43 or the Cx43-M257 (Cx43K258stop) mutant protein, a carboxyl-terminus (CT) truncated version of Cx43 lacking pH-sensitivity. The addition of 1 μM ionomycin to normal calcium saline reduced Cx43 or Cx43-M257 gj to zero within 15 min of perfusion. This response was prevented by Ca2+-free saline or addition of 100 nM calmodulin (CaM) inhibitory peptide to the internal pipette solution. Internal addition of a connexin50 cytoplasmic loop calmodulin-binding domain (CaMBD) mimetic peptide (200 nM) prevented the Ca2+/ionomycin-induced decrease in Cx43 gj, while 100 μM Gap19 peptide had minimal effect. The investigation of the transjunctional voltage (Vj) gating properties of NMVM Cx43-M257 gap junctions confirmed the loss of the fast inactivation of Cx43-M257 gj, but also noted the abolishment of the previously reported facilitated recovery of gj from inactivating potentials. We conclude that the distal CT domain of Cx43 contributes to the Vj-dependent fast inactivation and facilitated recovery of Cx43 gap junctions, but the Ca2+/CaM-dependent gating mechanism remains intact in its absence. Sequence-specific connexin CaMBD mimetic peptides act by binding Ca2+/CaM non-specifically and the Cx43 mimetic Gap19 peptide has negligible effect on this chemical gating mechanism.



2012 ◽  
Vol 302 (10) ◽  
pp. C1548-C1556 ◽  
Author(s):  
Qin Xu ◽  
Richard F. Kopp ◽  
Yanyi Chen ◽  
Jenny J. Yang ◽  
Michael W. Roe ◽  
...  

Calmodulin (CaM) binding sites were recently identified on the cytoplasmic loop (CL) of at least three α-subfamily connexins (Cx43, Cx44, Cx50), while Cx40 does not have this putative CaM binding domain. The purpose of this study was to examine the functional relevance of the putative Cx43 CaM binding site on the Ca2+-dependent regulation of gap junction proteins formed by Cx43 and Cx40. Dual whole cell patch-clamp experiments were performed on stable murine Neuro-2a cells expressing Cx43 or Cx40. Addition of ionomycin to increase external Ca2+ influx reduced Cx43 gap junction conductance (Gj) by 95%, while increasing cytosolic Ca2+ concentration threefold. By contrast, Cx40 Gj declined by <20%. The Ca2+-induced decline in Cx43 Gj was prevented by pretreatment with calmidazolium or reversed by the addition of 10 mM EGTA to Ca2+-free extracellular solution, if Ca2+ chelation was commenced before complete uncoupling, after which gj was only 60% recoverable. The Cx43 CL136–158 mimetic peptide, but not the scrambled control peptide, or Ca2+/CaM-dependent kinase II 290–309 inhibitory peptide also prevented the Ca2+/CaM-dependent decline of Cx43 Gj. Cx43 gap junction channel open probability decreased to zero without reductions in the current amplitudes during external Ca2+/ionomycin perfusion. We conclude that Cx43 gap junctions are gated closed by a Ca2+/CaM-dependent mechanism involving the carboxyl-terminal quarter of the connexin CL domain. This study provides the first evidence of intrinsic differences in the Ca2+ regulatory properties of Cx43 and Cx40.



2000 ◽  
Vol 278 (5) ◽  
pp. H1662-H1670 ◽  
Author(s):  
Jeffrey E. Saffitz ◽  
Karen G. Green ◽  
William J. Kraft ◽  
Kenneth B. Schechtman ◽  
Kathryn A. Yamada

Gap junction number and size vary widely in cardiac tissues with disparate conduction properties. Little is known about how tissue-specific patterns of intercellular junctions are established and regulated. To elucidate the relationship between gap junction channel protein expression and the structure of gap junctions, we analyzed Cx43 +/− mice, which have a genetic deficiency in expression of the major ventricular gap junction protein, connexin43 (Cx43). Quantitative confocal immunofluorescence microscopy revealed that diminished Cx43 signal in Cx43 +/− mice was due almost entirely to a reduction in the number of individual gap junctions (226 ± 52 vs. 150 ± 32 individual gap junctions/field in Cx43 +/+ and +/− ventricles, respectively; P < 0.05). The mean size of an individual gap junction was the same in both groups. Immunofluorescence results were confirmed with electron microscopic morphometry. Thus when connexin expression is diminished, ventricular myocytes become interconnected by a reduced number of large, normally sized gap junctions, rather than a normal number of smaller junctions. Maintenance of large gap junctions may be an adaptive response supporting safe ventricular conduction.



2001 ◽  
Vol 281 (4) ◽  
pp. H1675-H1689 ◽  
Author(s):  
Virginijus Valiunas ◽  
Joanna Gemel ◽  
Peter R. Brink ◽  
Eric C. Beyer

Many cardiovascular cells coexpress multiple connexins (Cx), leading to the potential formation of mixed (heteromeric) gap junction hemichannels whose biophysical properties may differ from homomeric channels containing only one connexin type. We examined the potential interaction of connexin Cx43 and Cx40 in HeLa cells sequentially stably transfected with these two connexins. Immunoblots verified the production of comparable amounts of both connexins, cross-linking showed that both connexins formed oligomers, and immunofluorescence showed extensive colocalization. Moreover, Cx40 copurified with (His)6-tagged Cx43 by affinity chromatography of detergent-solubilized connexons, demonstrating the presence of both connexins in some hemichannels. The dual whole cell patch-clamp method was used to compare the gating properties of gap junctions in HeLa Cx43/Cx40 cells with homotypic (Cx40-Cx40 and Cx43-Cx43) and heterotypic (Cx40-Cx43) gap junctions. Many of the observed single channel conductances resembled those of homotypic or heterotypic channels. The steady-state junctional conductance ( g j,ss) in coexpressing cell pairs showed a reduced sensitivity to the voltage between cells ( V j) compared with homotypic gap junctions and/or an asymmetrical V j dependence reminiscent of heterotypic gap junctions. These gating properties could be fit using a combination of homotypic and heterotypic channel properties. Thus, whereas our biochemical evidence suggests that Cx40 and Cx43 form heteromeric connexons, we conclude that they are functionally insignificant with regard to voltage-dependent gating.



2005 ◽  
Vol 288 (3) ◽  
pp. H1113-H1123 ◽  
Author(s):  
Xianming Lin ◽  
Joanna Gemel ◽  
Eric C. Beyer ◽  
Richard D. Veenstra

The ventricular action potential was applied to paired neonatal murine ventricular myocytes in the dual whole cell configuration. During peak action potential voltages >100 mV, junctional conductance ( gj) declined by 50%. This transjunctional voltage ( Vj)-dependent inactivation exhibited two time constants that became progressively faster with increasing Vj. Gj returned to initial peak values during action potential repolarization and even exceeded peak gj values during the final 5% of repolarization. This facilitation of gj was observed <30 mV during linearly decreasing Vj ramps. The same behavior was observed in ensemble averages of individual gap junction channels with unitary conductances of 100 pS or lower. Immunohistochemical fluorescent micrographs and immunoblots detect prominent amounts of connexin (Cx)43 and lesser amounts of Cx40 and Cx45 proteins in cultured ventricular myocytes. The time dependence of the gj curves and channel conductances are consistent with the properties of predominantly homomeric Cx43 gap junction channels. A mathematical model depicting two inactivation and two recovery phases accurately predicts the ventricular gj curves at different rates of stimulation and repolarization. Functional differences are apparent between ventricular myocytes and Cx43-transfected N2a cell gap junctions that may result from posttranslational modification. These observations suggest that gap junctions may play a role in the development of conduction block and the genesis and propagation of triggered arrhythmias under conditions of slowed conduction (<10 cm/s).



2004 ◽  
Vol 286 (1) ◽  
pp. H186-H194 ◽  
Author(s):  
Kenneth B. Walsh ◽  
Qi Cheng

The goal of this study was to determine whether the protein kinase A (PKA) responsiveness of the cardiac L-type Ca2+ current ( ICa) is affected during transient increases in intracellular Ca2+ concentration. Ventricular myocytes were isolated from 3- to 4-day-old neonatal rats and cultured on aligned collagen thin gels. When measured in 1 or 2 mM Ca2+ external solution, the aligned myocytes displayed a large ICa that was weakly regulated (20% increase) during stimulation of PKA by 2 μM forskolin. In contrast, application of forskolin caused a 100% increase in ICa when the external Ca2+ concentration was reduced to 0.5 mM or replaced with Ba2+. This Ca2+-dependent inhibition was also observed when the cells were treated with 1 μM isoproterenol, 100 μM 3-isobutyl-1-methylxanthine, or 500 μM 8-bromo-cAMP. The responsiveness of ICa to PKA was restored during intracellular dialysis with a calmodulin (CaM) inhibitory peptide but not during treatment with inhibitors of protein kinase C, Ca2+/CaM-dependent protein kinase, or calcineurin. Adenoviral-mediated expression of a CaM molecule with mutations in all four Ca2+-binding sites also increased the PKA sensitivity of ICa. Finally, adult mouse ventricular myocytes displayed a greater response to forskolin and cAMP in external Ba2+. Thus Ca2+ entering the myocyte through the voltage-gated Ca2+ channel regulates the PKA responsiveness of ICa.



Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Gemma A Figtree ◽  
Caroline N White ◽  
Chia Chi Liu ◽  
Alvaro Garcia ◽  
Elisha J Hamilton ◽  
...  

Background: The sarcolemmal Na + -K + pump, essentially the only export route for Na + and pivotal for cardiac myocyte function, is inhibited by angiotensin II (Ang II). Since Ang II activates NAD(P)H oxidase we tested the hypothesis that NAD(P)H oxidase mediates Ang II-induced pump inhibition. This is important for our understanding of pathophysiology and treatment of heart failure, a condition with increases in circulating Ang II levels; intracellular myocyte Na + ; NAD(PH oxidase activity; and myocardial oxidative stress. The raised myocyte Na + is believed to contribute to the electro-mechanical phenotype of contractile abnormalities and cardiac arrhythmias. Methods and results: Exposure to 100 nmol/L Ang II increased fluorescence of isolated rabbit ventricular myocytes loaded with a superoxide-sensitive dye. The increase was abolished by pegylated superoxide dismutase (SOD), by the NAD(P)H oxidase inhibitor apocynin and by myristolated inhibitory peptide to ϵ -protein kinase C ( ϵ PKC), previously implicated in Ang II-induced Na + -K + pump inhibition. Exposure of voltage-clamped myocytes to Ang II decreased electrogenic Na + -K + pump current, I p , from 0.48 ± 0.02 pA/pF, N = 11 to 0.36 ± 0.03 pA/pF, N = 11 (P < 0.05). The decrease was abolished (P < 0.05) by inclusion in pipette solution of: SOD, the gp91ds inhibitory peptide that blocks assembly and activation of NAD(P)H oxidase and by ϵ PKC inhibitory peptide. Since co-localization should facilitate NAD(P)H-oxidase dependent regulation of the Na + -K + pump we examined if there is physical association between the pump and NAD(P)H oxidase. Cell lysate was immunoprecipitated with antibody to the α 1 pump subunit. Immunoblotting demonstrated co-immunoprecipitation of the α 1 subunit with caveolin 3 and with membrane-associated p22 phox and cytosolic p47 phox NAD(P)H oxidase subunits at baseline. Ang II had no effect on α 1 /caveolin3 or α 1 /p22 phox interaction, but increased α 1 /p47 phox co-immunoprecipitation. Conclusion: Ang II is known to induce PKC-dependent phosphorylation and translocation of p47 phox resulting in activation of NAD(P)H oxidase, and we propose this activation occurs in a caveolar microdomain and that it mediates the inhibition of the Na + -K + pump by Ang II.



2000 ◽  
Vol 11 (7) ◽  
pp. 2459-2470 ◽  
Author(s):  
Lucy A. Stebbings ◽  
Martin G. Todman ◽  
Pauline Phelan ◽  
Jonathan P. Bacon ◽  
Jane A. Davies

Members of the innexin protein family are structural components of invertebrate gap junctions and are analogous to vertebrate connexins. Here we investigate two Drosophila innexin genes,Dm-inx2 and Dm-inx3 and show that they are expressed in overlapping domains throughout embryogenesis, most notably in epidermal cells bordering each segment. We also explore the gap-junction–forming capabilities of the encoded proteins. In pairedXenopus oocytes, the injection of Dm-inx2mRNA results in the formation of voltage-sensitive channels in only ∼ 40% of cell pairs. In contrast, Dm-Inx3 never forms channels. Crucially, when both mRNAs are coexpressed, functional channels are formed reliably, and the electrophysiological properties of these channels distinguish them from those formed by Dm-Inx2 alone. We relate these in vitro data to in vivo studies. Ectopic expression ofDm-inx2 in vivo has limited effects on the viability ofDrosophila, and animals ectopically expressingDm-inx3 are unaffected. However, ectopic expression of both transcripts together severely reduces viability, presumably because of the formation of inappropriate gap junctions. We conclude that Dm-Inx2 and Dm-Inx3, which are expressed in overlapping domains during embryogenesis, can form oligomeric gap-junction channels.



2008 ◽  
Vol 294 (4) ◽  
pp. C966-C976 ◽  
Author(s):  
Sunwoo Lee ◽  
Joon-Chul Kim ◽  
Yuhua Li ◽  
Min-Jeong Son ◽  
Sun-Hee Woo

This study examines whether fluid pressure (FP) modulates the L-type Ca2+ channel in cardiomyocytes and investigates the underlying cellular mechanism(s) involved. A flow of pressurized (∼16 dyn/cm2) fluid, identical to that bathing the myocytes, was applied onto single rat ventricular myocytes using a microperfusion method. The Ca2+ current ( ICa) and cytosolic Ca2+ signals were measured using a whole cell patch-clamp and confocal imaging, respectively. It was found that the FP reversibly suppressed ICa (by 25%) without altering the current-voltage relationships, and it accelerated the inactivation of ICa. The level of ICa suppression by FP depended on the level and duration of pressure. The Ba2+ current through the Ca2+ channel was only slightly decreased by the FP (5%), suggesting an indirect inhibition of the Ca2+ channel during FP stimulation. The cytosolic Ca2+ transients and the basal Ca2+ in field-stimulated ventricular myocytes were significantly increased by the FP. The effects of the FP on the ICa and on the Ca2+ transient were resistant to the stretch-activated channel inhibitors, GsMTx-4 and streptomycin. Dialysis of myocytes with high concentrations of BAPTA, the Ca2+ buffer, eliminated the FP-induced acceleration of ICa inactivation and reduced the inhibitory effect of the FP on ICa by ≈80%. Ryanodine and thapsigargin, abolishing sarcoplasmic reticulum Ca2+ release, eliminated the accelerating effect of FP on the ICa inactivation, and they reduced the inhibitory effect of FP on the ICa. These results suggest that the fluid pressure indirectly suppresses the Ca2+ channel by enhancing the Ca2+-induced intracellular Ca2+ release in rat ventricular myocytes.



2008 ◽  
Vol 295 (5) ◽  
pp. H1905-H1916 ◽  
Author(s):  
Andrianos Kontogeorgis ◽  
Xiaodong Li ◽  
Eunice Y. Kang ◽  
Jonathan E. Feig ◽  
Marc Ponzio ◽  
...  

Gap junction redistribution and reduced expression, a phenomenon termed gap junction remodeling (GJR), is often seen in diseased hearts and may predispose toward arrhythmias. We have recently shown that short-term pacing in the mouse is associated with changes in connexin43 (Cx43) expression and localization but not with increased inducibility into sustained arrhythmias. We hypothesized that short-term pacing, if imposed on murine hearts with decreased Cx43 abundance, could serve as a model for evaluating the electrophysiological effects of GJR. We paced wild-type (normal Cx43 abundance) and heterozygous Cx43 knockout (Cx43+/−; 66% mean reduction in Cx43) mice for 6 h at 10–15% above their average sinus rate. We investigated the electrophysiological effects of pacing on the whole animal using programmed electrical stimulation and in isolated ventricular myocytes with patch-clamp studies. Cx43+/− myocytes had significantly shorter action potential durations (APD) and increased steady-state ( Iss) and inward rectifier ( IK1) potassium currents compared with those of wild-type littermate cells. In Cx43+/− hearts, pacing resulted in a significant prolongation of ventricular effective refractory period and APD and significant diminution of Iss compared with unpaced Cx43+/− hearts. However, these changes were not seen in paced wild-type mice. These data suggest that Cx43 abundance plays a critical role in regulating currents involved in myocardial repolarization and their response to pacing. Our study may aid in understanding how dyssynchronous activation of diseased, Cx43-deficient myocardial tissue can lead to electrophysiological changes, which may contribute to the worsened prognosis often associated with pacing in the failing heart.



Sign in / Sign up

Export Citation Format

Share Document