scholarly journals Somatosensory Perceptual Training Enhances Motor Learning by Observing

2018 ◽  
Author(s):  
Heather R. McGregor ◽  
Joshua G.A. Cashaback ◽  
Paul L. Gribble

AbstractNeuroimaging and neurophysiological studies in humans have demonstrated that action observation activates brain regions involved in sensory-motor control. A growing body of work has shown that action observation can also facilitate motor learning; observing a tutor undergoing motor learning results in functional plasticity within the motor system and gains in subsequent motor performance. However, the effects of observing motor learning extend beyond the motor domain. Converging evidence suggests that learning also results in somatosensory functional plasticity and somatosensory perceptual changes. This work has raised the possibility that the somatosensory system is also involved in motor learning that results from observation. Here we tested this hypothesis using a somatosensory perceptual training paradigm. If the somatosensory system is indeed involved in motor learning by observing, then improving subjects' somatosensory function before observation should enhance subsequent observation-related gains in motor performance. Subjects performed a proprioceptive discrimination task in which a robotic manipulandum moved the subject’s passive upper limb and he or she made judgments about the position of the hand. Subjects in a Trained Learning group received trial-by-trial feedback to improve their proprioceptive acuity. Subjects in an Untrained Learning group performed the same task without feedback. All subjects then observed a learning video showing a tutor adapting her reaches to a left force field (FF). We found that subjects in the Trained Learning group, who had superior proprioceptive acuity prior to observation, benefited more from observing learning compared to subjects in the Untrained Learning group. Improving somatosensory function can therefore enhance subsequent observation-related gains in motor learning. This study provides further evidence in favor of the involvement of the somatosensory system in motor learning by observing.AbbreviationsFF:Force fieldPD:Maximum perpendicular deviationIQR:interquartile rangeThe authors report no financial interests or conflicts of interests.

2018 ◽  
Vol 120 (6) ◽  
pp. 3017-3025 ◽  
Author(s):  
Heather R. McGregor ◽  
Joshua G. A. Cashaback ◽  
Paul L. Gribble

Action observation activates brain regions involved in sensory-motor control. Recent research has shown that action observation can also facilitate motor learning; observing a tutor undergoing motor learning results in functional plasticity within the motor system and gains in subsequent motor performance. However, the effects of observing motor learning extend beyond the motor domain. Converging evidence suggests that observation also results in somatosensory functional plasticity and somatosensory perceptual changes. This work has raised the possibility that the somatosensory system is also involved in motor learning that results from observation. Here we tested this hypothesis using a somatosensory perceptual training paradigm. If the somatosensory system is indeed involved in motor learning by observing, then improving subjects' somatosensory function before observation should enhance subsequent motor learning by observing. Subjects performed a proprioceptive discrimination task in which a robotic manipulandum moved the arm, and subjects made judgments about the position of their hand. Subjects in a Trained Learning group received trial-by-trial feedback to improve their proprioceptive perception. Subjects in an Untrained Learning group performed the same task without feedback. All subjects then observed a learning video showing a tutor adapting her reaches to a left force field. Subjects in the Trained Learning group, who had superior proprioceptive acuity before observation, benefited more from observing learning than subjects in the Untrained Learning group. Improving somatosensory function can therefore enhance subsequent observation-related gains in motor learning. This study provides further evidence in favor of the involvement of the somatosensory system in motor learning by observing. NEW & NOTEWORTHY We show that improving somatosensory performance before observation can improve the extent to which subjects learn from watching others. Somatosensory perceptual training may prime the sensory-motor system, thereby facilitating subsequent observational learning. The findings of this study suggest that the somatosensory system supports motor learning by observing. This finding may be useful if observation is incorporated as part of therapies for diseases affecting movement, such as stroke.


2013 ◽  
Vol 110 (8) ◽  
pp. 1804-1810 ◽  
Author(s):  
Nicolò F. Bernardi ◽  
Mohammad Darainy ◽  
Emanuela Bricolo ◽  
David J. Ostry

Observing the actions of others has been shown to affect motor learning, but does it have effects on sensory systems as well? It has been recently shown that motor learning that involves actual physical practice is also associated with plasticity in the somatosensory system. Here, we assessed the idea that observational learning likewise changes somatosensory function. We evaluated changes in somatosensory function after human subjects watched videos depicting motor learning. Subjects first observed video recordings of reaching movements either in a clockwise or counterclockwise force field. They were then trained in an actual force-field task that involved a counterclockwise load. Measures of somatosensory function were obtained before and after visual observation and also following force-field learning. Consistent with previous reports, video observation promoted motor learning. We also found that somatosensory function was altered following observational learning, both in direction and in magnitude, in a manner similar to that which occurs when motor learning is achieved through actual physical practice. Observation of the same sequence of movements in a randomized order did not result in somatosensory perceptual change. Observational learning and real physical practice appear to tap into the same capacity for sensory change in that subjects that showed a greater change following observational learning showed a reliably smaller change following physical motor learning. We conclude that effects of observing motor learning extend beyond the boundaries of traditional motor circuits, to include somatosensory representations.


2013 ◽  
Vol 109 (3) ◽  
pp. 782-791 ◽  
Author(s):  
Andrew A. G. Mattar ◽  
Mohammad Darainy ◽  
David J. Ostry

A complex interplay has been demonstrated between motor and sensory systems. We showed recently that motor learning leads to changes in the sensed position of the limb (Ostry DJ, Darainy M, Mattar AA, Wong J, Gribble PL. J Neurosci 30: 5384–5393, 2010). Here, we document further the links between motor learning and changes in somatosensory perception. To study motor learning, we used a force field paradigm in which subjects learn to compensate for forces applied to the hand by a robotic device. We used a task in which subjects judge lateral displacements of the hand to study somatosensory perception. In a first experiment, we divided the motor learning task into incremental phases and tracked sensory perception throughout. We found that changes in perception occurred at a slower rate than changes in motor performance. A second experiment tested whether awareness of the motor learning process is necessary for perceptual change. In this experiment, subjects were exposed to a force field that grew gradually in strength. We found that the shift in sensory perception occurred even when awareness of motor learning was reduced. These experiments argue for a link between motor learning and changes in somatosensory perception, and they are consistent with the idea that motor learning drives sensory change.


2020 ◽  
pp. 1-10
Author(s):  
Toledo Felippe ◽  
Thaler Markus

BACKGROUND: Action observation describes a concept where the subsequent motor behavior of an individual can be modulated though observing an action. This occurs through the activation of neurons in the action observation network, acting on a variety of motor learning processes. This network has been proven highly useful in the rehabilitation of patients with acquired brain injury, placing “action observation” as one of the most effective techniques for motor recovery in physical neurorehabilitation. OBJECTIVE: The aim of this paper is to define an EEG marker for motor learning, guided through observation. METHODS: Healthy subjects (n = 41) participated voluntarily for this research. They were asked to repeat an unknown motor behavior, immediately after observing a video. During the observation, EEG raw signals where collected with a portable EEG and the results were later compared with success and fail on repeating the motor procedure. The comparison was then analyzed with the Mann-Whitney U test for non-parametrical data, with a confidence interval of 95%. RESULTS: A significant relation between motor performance and neural activity was found for Alpha (p = 0,0149) and Gamma (0,0005) oscillatory patterns. CONCLUSION: Gamma oscillations with frequencies between 41 and 49,75 Hz, seem to be an adequate EEG marker for motor performance guided through the action observation network. The technology used for this paper is easy to use, low-cost and presents valid measurements for the recommended oscillatory frequencies, implying a possible use on rehabilitation, by collecting data in real-time during therapeutic interventions and assessments.


2013 ◽  
Vol 110 (9) ◽  
pp. 2152-2162 ◽  
Author(s):  
Mohammad Darainy ◽  
Shahabeddin Vahdat ◽  
David J. Ostry

Motor learning often involves situations in which the somatosensory targets of movement are, at least initially, poorly defined, as for example, in learning to speak or learning the feel of a proper tennis serve. Under these conditions, motor skill acquisition presumably requires perceptual as well as motor learning. That is, it engages both the progressive shaping of sensory targets and associated changes in motor performance. In the present study, we test the idea that perceptual learning alters somatosensory function and in so doing produces changes to human motor performance and sensorimotor adaptation. Subjects in these experiments undergo perceptual training in which a robotic device passively moves the subject's arm on one of a set of fan-shaped trajectories. Subjects are required to indicate whether the robot moved the limb to the right or the left and feedback is provided. Over the course of training both the perceptual boundary and acuity are altered. The perceptual learning is observed to improve both the rate and extent of learning in a subsequent sensorimotor adaptation task and the benefits persist for at least 24 h. The improvement in the present studies varies systematically with changes in perceptual acuity and is obtained regardless of whether the perceptual boundary shift serves to systematically increase or decrease error on subsequent movements. The beneficial effects of perceptual training are found to be substantially dependent on reinforced decision-making in the sensory domain. Passive-movement training on its own is less able to alter subsequent learning in the motor system. Overall, this study suggests perceptual learning plays an integral role in motor learning.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kristel Yu Tiamco Bayani ◽  
Nikhilesh Natraj ◽  
Nada Khresdish ◽  
Justin Pargeter ◽  
Dietrich Stout ◽  
...  

AbstractStone toolmaking is a human motor skill which provides the earliest archeological evidence motor skill and social learning. Intentionally shaping a stone into a functional tool relies on the interaction of action observation and practice to support motor skill acquisition. The emergence of adaptive and efficient visuomotor processes during motor learning of such a novel motor skill requiring complex semantic understanding, like stone toolmaking, is not understood. Through the examination of eye movements and motor skill, the current study sought to evaluate the changes and relationship in perceptuomotor processes during motor learning and performance over 90 h of training. Participants’ gaze and motor performance were assessed before, during and following training. Gaze patterns reveal a transition from initially high gaze variability during initial observation to lower gaze variability after training. Perceptual changes were strongly associated with motor performance improvements suggesting a coupling of perceptual and motor processes during motor learning.


2019 ◽  
Vol 121 (3) ◽  
pp. 729-731 ◽  
Author(s):  
S. A. L. Jayasinghe

Action observation involves the observation of an action followed by an attempt to replicate it. Recent studies show that increased sensorimotor cortical connectivity improves motor performance via observation and that priming the sensory system before observation enhances the effects of observation-based learning. Understanding the role of the sensory system is, therefore, critical for rehabilitation of movement disorders that have a sensory deficit.


2021 ◽  
Author(s):  
Puneet Singh ◽  
Oishee Ghosal ◽  
Aditya Murthy ◽  
Ashitava Ghodal

A human arm, up to the wrist, is often modelled as a redundant 7 degree-of-freedom serial robot. Despite its inherent nonlinearity, we can perform point-to-point reaching tasks reasonably fast and with reasonable accuracy in the presence of external disturbances and noise. In this work, we take a closer look at the task space error during point-to-point reaching tasks and learning during an external force-field perturbation. From experiments and quantitative data, we confirm a directional dependence of the peak task space error with certain directions showing larger errors than others at the start of a force-field perturbation, and the larger errors are reduced with repeated trials implying learning. The analysis of the experimental data further shows that a) the distribution of the peak error is made more uniform across directions with trials and the error magnitude and distribution approaches the value when no perturbation is applied, b) the redundancy present in the human arm is used more in the direction of the larger error, and c) homogenization of the error distribution is not seen when the reaching task is performed with the non-dominant hand. The results support the hypothesis that not only magnitude of task space error, but the directional dependence is reduced during motor learning and the workspace is homogenized possibly to increase the control efficiency and accuracy in point-to-point reaching tasks. The results also imply that redundancy in the arm is used to homogenize the workspace, and additionally since the bio-mechanically similar dominant and non-dominant arms show different behaviours, the homogenizing is actively done in the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document